ÌâÄ¿ÄÚÈÝ
9£®£¨1£©´øµç΢Á£µÚÒ»´Î¾¹ý´Å³¡±ß½çµÄλÖÃ×ø±ê£®
£¨2£©´øµç΢Á£ÓÉ×ø±êÔµãÊͷŵ½×îÖÕÀ뿪µç¡¢´Å³¡ÇøÓòËùÓõÄʱ¼ä£®
£¨3£©´øµç΢Á£×îÖÕÀ뿪µç¡¢´Å³¡ÇøÓòµÄλÖÃ×ø±ê£®
·ÖÎö £¨1£©¸ù¾Ý΢Á£Ôڵ糡ºÍ´Å³¡ÖеÄÔ˶¯ÐÔÖÊ£¬¿ÉµÃ³ö΢Á£Ô˶¯µÄ¹ý³Ì¼££¬Ôò¿É»³öÁ£×ÓÔڴų¡ÖеĹ켣£®ÓÉÂåÂØ×ÈÁ¦³äµ±ÏòÐÄÁ¦¿ÉµÃ³öÁ£×ÓÔÚת¶¯°ë¾¶£¬ÔÙÓɼ¸ºÎ¹ØÏµ¿ÉµÃ³ö΢Á£µÚÒ»´Î¾¹ý´Å³¡±ß½çʱµÄλÖÃ×ø±ê£»
£¨2£©¸ù¾ÝÁ£×ÓµÄÔ˶¯¹ý³Ì£¬·Ö±ðÇóµÃµç³¡ºÍ´Å³¡ÖеÄʱ¼ä£¬Ôò¿ÉÇóµÃ×Üʱ¼ä£®
£¨3£©Á£×Ó½øÈëµç³¡ºó×öÀàÆ½Å×Ô˶¯£¬¸ù¾ÝÀàÆ½Å׵ĹæÂɿɵóö×îÖÕÀ뿪ʱµÄ×ø±ê£»
½â´ð ½â£º
£¨1£©´øµçÁ£×Ó´ÓOµãÉäÈë´Å³¡Ô˶¯¹ì¼£ÈçͼËùʾ£¬
ÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬µÃ£º$q{v}_{0}B=\frac{m{v}_{0}^{2}}{r}$
µÃ$r=\frac{m{v}_{0}}{qB}$=$\frac{1¡Á1{0}^{-24}¡Á2¡Á1{0}^{3}}{5¡Á1{0}^{-18}¡Á0.1}$=4¡Á10-3m
ÓÉÌâÒâ¼°¼¸ºÎ¹ØÏµ¿ÉÖª´øµçÁ£×ÓµÄÔ˶¯¹ì¼£Ôڴų¡ÖÐÆ«×ªµÄÔ²ÐĽÇΪ90¡ã£¬ÔòAµãλÖÃ×ø±ê£¨-4¡Á10-3£¬-4¡Á10-3£©£®
£¨2£©Éè´øµãÁ£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÖÜÆÚΪT£¬Ôò£ºT=$\frac{2¦Ðr}{{v}_{0}}=\frac{2¡Á3.14¡Á4¡Á1{0}^{-3}}{2¡Á1{0}^{3}}s=1.26¡Á1{0}^{-5}$s
ÓÉͼ¿ÉÖªÁ£×ÓÔڴų¡ÖÐÔ˶¯Ê±¼ä£º${t}_{1}={t}_{OA}+{t}_{AC}=\frac{1}{4}T+\frac{3}{4}T=1.26¡Á1{0}^{-5}$s
´øµçÁ£×ÓµÚÒ»´ÎÔڵ糡ÖÐÔ˶¯µÄʱ¼ät2£¬t2=$\frac{2{v}_{0}}{a}=\frac{2m{v}_{0}}{qE}$
´úÈëÊý¾ÝµÃ£º${t}_{2}=2.50¡Á1{0}^{-3}$s
ÉèÁ£×Ó´ÓCµãÑØyÖáÕý·½Ïò½øÈëµç³¡£¬×öÀàÆ½Å×Ô˶¯£¬Ôò$a=\frac{qE}{m}$£¬$¡÷x=2r=\frac{1}{2}a{t}_{3}^{2}$
${t}_{3}=\sqrt{\frac{2¡÷x}{a}}$=1.0¡Á10-4s
Á£×ÓÔÚµç´Å³¡Ô˶¯µÄ×Üʱ$t={t}_{1}+{t}_{2}+{t}_{3}=2.61¡Á1{0}^{-3}$
£¨3£©ÊúÖ±·½Ïò£º¡÷y=v0t3=0.2m
ËùÒÔ×ø±êy=¡÷y-2r=0.192m
´øµçÁ£×ÓÀ뿪µç´Å³¡Ê±µÄλÖÃ×ø±êΪ£¨0£¬0.192m£©
´ð£º£¨1£©´øµç΢Á£µÚÒ»´Î¾¹ý´Å³¡±ß½çµÄλÖÃ×ø±êΪ£¨-4¡Á10-3£¬-4¡Á10-3£©£®
£¨2£©´øµç΢Á£ÓÉ×ø±êÔµãÊͷŵ½×îÖÕÀ뿪µç¡¢´Å³¡ÇøÓòËùÓõÄʱ¼äΪ2.61¡Á10-3s£®
£¨3£©´øµç΢Á£×îÖÕÀ뿪µç¡¢´Å³¡ÇøÓòµÄλÖÃ×ø±êΪ£¨0£¬0.192m£©£®
µãÆÀ ±¾Ì⿼²é´øµçÁ£×ÓÔÚµç´Å³¡ÖеÄÔ˶¯£¬×¢ÒâÔڴų¡ÖеÄÔ˶¯Òª×¢Ò⼸ºÎ¹ØÏµµÄÓ¦Óã¬Ôڵ糡ÖÐ×¢ÒâÓÉÀàÆ½Å×Ô˶¯µÄ¹æÂÉÇó½â£®
| A£® | ¸Ãµç¶¯»úÏßȦÉϲúÉúµÄÈÈÁ¿Îª1.0¡Á104J | |
| B£® | ¸Ãµç¶¯»úÏßȦÉϲúÉúµÄÈÈÁ¿Îª2.0¡Á105J | |
| C£® | ¸ÃµçÔ´Êä³ö»úе¹¦Îª1.0¡Á104J | |
| D£® | ¸ÃµçÔ´Êä³ö»úе¹¦Îª9.5¡Á103J |
| A£® | a¹âÕÕÉäʱ£¬²»ÄÜ·¢Éú¹âµçЧӦ | |
| B£® | c¹âÕÕÉäʱ£¬²»ÄÜ·¢Éú¹âµçЧӦ | |
| C£® | a¹âÕÕÉäʱ£¬ÊͷųöµÄ¹âµç×ÓµÄ×î´ó³õ¶¯ÄÜ×î´ó | |
| D£® | c¹âÕÕÉäʱ£¬ÊͷųöµÄ¹âµç×ÓµÄ×î´ó³õ¶¯ÄÜ×îС |
| A£® | K¶Ï¿ªÊ±£¬½ðÊô°ôÁ½¶ËµÄµçѹΪB lv | |
| B£® | K±ÕºÏʱ£¬abÁ½¶ËµÄµçѹΪBlv | |
| C£® | K±ÕºÏʱ£¬¸ÐÓ¦µçÁ÷µÄ´óСΪ$\frac{BLv}{R+r}$ | |
| D£® | K±ÕºÏʱ£¬µçÔ´µÄ¹¦ÂÊΪ$\frac{{{B^2}{l^2}{v^2}}}{R+r}$ |