ÌâÄ¿ÄÚÈÝ
18£®£¨1£©¾¹Û²ì£¬Ë®Æ½Å׳öµÄСÇò³õËÙ¶ÈÔ½´ó£¬ÔòÔÚÐ±ÃæÉϵÄÂäµãÔ½Ô¶£®ÓÉ´Ë£¬ÓÐͬѧ²ÂÏ룺ÂäÔÚÐ±ÃæÉϵÄСÇòËÙ¶È´óСÓëËüÅ׳öµÄ³õËÙ¶È´óС³ÉÕý±È£®ÄãÈôͬÒâ¸Ã²ÂÏ룬ÇëÖ¤Ã÷£»ÄãÈô²»Í¬Òâ²ÂÏ룬Çë˵Ã÷ÀíÓÉ£®
£¨2£©Èô³·È¥Ð±Ã棬СÇòÒ²´ÓOµãÒÔ²»Í¬µÄ³õËÙ¶ÈÏòÓÒˮƽÅ׳ö£¬µ±Ã¿¸öСÇòÔÚ¿ÕÖеÄËÙ¶È´óСΪ¸÷×Ô³õËÙ¶È´óСµÄ2±¶Ê±µÄλÖ÷ֱð¼ÇΪP1£¬P2£¬P3£¬¡£¬ÔòP1£¬P2£¬P3£¬¡£¬µÄÁ¬Ïß¹¹³É£º
A£®Ò»Ìõ¹ýÔµãµÄÅ×ÎïÏß B£®Ò»Ìõ¹ýÔµãµÄÖ±Ïß C£®Ò»Ìõ²»¹æÔòµÄÇúÏß
ÒÔÉÏÈýÏîÖÐÄÄÒ»ÏîÊÇÕýÈ·µÄ£¬²¢¼ÓÒÔÖ¤Ã÷£®
·ÖÎö £¨1£©Ð¡Çò×öƽÅ×Ô˶¯£¬Ë®Æ½·ÖÔ˶¯ÊÇÔÈËÙÖ±ÏßÔ˶¯£¬ÊúÖ±·ÖÔ˶¯ÊÇ×ÔÓÉÂäÌåÔ˶¯£¬¸ù¾Ý·ÖÎ»ÒÆ¹«Ê½ÁÐʽÇó½â¼´¿É£»
£¨2£©Ð¡Çò×öƽÅ×Ô˶¯£¬Ä©ËÙ¶ÈÊdzõËٶȵÄÁ½±¶£¬¸ù¾Ý·ÖÔ˶¯¹«Ê½Çó½â³öˮƽ·ÖÎ»ÒÆºÍÊúÖ±·ÖÎ»ÒÆ´óС£¬¼´¿ÉµÃµ½¸÷¸öÇòµÄλÖùØÏµ£®
½â´ð ½â£º£¨1£©Í¬Ò⣻
ÉèСÇò¿ÕÖзÉÐеÄʱ¼äΪt£¬ÓÉÆ½Å×Ô˶¯ÖªÊ¶¿ÉµÃ£º
x=v0t
$y=\frac{1}{2}g{t}^{2}$
Î»ÒÆÆ«×ª½ÇÕýÇÐÖµ£º
$tan¦È=\frac{y}{x}$
ÁªÁ¢½âµÃ£ºtan¦È=$\frac{gt}{2{v}_{0}}$
ÓÖÓÉÓÚvy=gt£¬¹Êvy=2v0tan¦È
ËùÒÔ£º$v=\sqrt{{v}_{0}^{2}+{v}_{y}^{2}}={v}_{0}\sqrt{1+4ta{n}^{2}¦È}$
´Ó¶øµÃµ½vÓëv0³ÉÕý±È£»
£¨2£©ÓÉÆ½Å×Ô˶¯ËٶȹØÏµÖª£º
${v}_{y}=\sqrt{{v}^{2}-{v}_{0}^{2}}=\sqrt{3}{v}_{0}$
ÓÉx=v0t£¬y=$\frac{1}{2}g{t}^{2}=\frac{{v}_{y}}{2}t$
½âµÃ£º$y=\frac{\sqrt{3}}{2}x$
¹ÊBÕýÈ·£»
´ð£º£¨1£©¸Ãͬѧ¹ÛµãÊÇÕýÈ·µÄ£¬Ö¤Ã÷¹ý³ÌÈçÉÏ£»
£¨2£©B£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷ȷƽÅ×Ô˶¯µÄ·ÖÔ˶¯ÐÔÖÊ£¬È»ºó½áºÏƽÅ×Ô˶¯µÄ·ÖÎ»ÒÆ¹«Ê½ºÍ·ÖËٶȹ«Ê½ÁÐʽÇó½â£¬»ù´¡ÌâÄ¿£®
| A£® | ¿ÉÒÔÊÇ22N£¬·½ÏòÑØÐ±ÃæÏòÏ | B£® | ²»¿ÉÄÜÊÇÁã | ||
| C£® | ¿ÉÒÔÊÇ2N£¬·½ÏòÑØÐ±ÃæÏòÏ | D£® | ¿ÉÒÔÊÇ2N£¬·½ÏòÑØÐ±ÃæÏòÉÏ |
| A£® | 0-4sÄڼ׳µ±£³Ö¾²Ö¹£¬ÒÒ³µ×öÔÈËÙÖ±ÏßÔ˶¯ | |
| B£® | ǰ2s¼×³µËٶȱÈÒÒ³µ´ó£¬ºó2sÒÒ³µµÄËٶȱȼ׳µ´ó | |
| C£® | ÔÚ2sÄ©Á½³µµÄËÙ¶ÈÏàµÈ | |
| D£® | ÔÚ4sÄ©Á½³µÔٴδ¦ÓÚͬһµØµã |
| A£® | ×öÇúÏßÔ˶¯µÄÎïÌå¼ÓËÙ¶È¿ÉÄÜΪÁã | |
| B£® | ÇúÏßÔ˶¯²»¿ÉÄÜÊÇÔȱäËÙÔ˶¯ | |
| C£® | ÇúÏßÔ˶¯Ò»¶¨ÊDZäËÙÔ˶¯£¬ÆäËÙÂÊÒ»¶¨ËæÊ±¼ä±ä»¯¶ø±ä»¯ | |
| D£® | ÎïÌåµÄºÏÍâÁ¦·½ÏòÓëËüµÄËÙ¶È·½Ïò²»ÔÚͬһֱÏßÉÏ |
| A£® | ÇâÔ×Ó´ÓµÚÒ»¼¤·¢Ì¬Ïò»ù̬ԾǨֻÄÜ·øÉäÌØ¶¨ÆµÂʵĹâ×Ó | |
| B£® | Èôʹ·ÅÉäÐÔÎïÖʵÄζÈÉý¸ß£¬Æä°ëË¥ÆÚ¿ÉÄܱäС | |
| C£® | ThºË·¢ÉúÒ»´Î¦ÁË¥±äʱ£¬ÐºËÓëÔÀ´µÄÔ×ÓºËÏà±È£¬ÖÐ×ÓÊý¼õÉÙÁË4 | |
| D£® | ¦ÁÁ£×ÓÉ¢ÉäʵÑéÄܽÒʾÔ×Ó¾ßÓкËʽ½á¹¹ | |
| E£® | Ì«Ñô·øÉäµÄÄÜÁ¿Ö÷ÒªÀ´×ÔÌ«ÑôÄÚ²¿µÄÈȺ˷´Ó¦ |