ÌâÄ¿ÄÚÈÝ
4£®Èçͼ¼×ËùʾÊÇÒ»¸ö¼òÒ×µÄʵÑé×°Öã¬Í¬ÖÖ²ÄÁÏÖÆ³ÉµÄµ¼¹ìABC£¬BC¶Î¹Ì¶¨ÔÚˮƽʵÑę́ÉÏ£¬AB¶Î¿ÉÒÔÈÆBµãÔÚÊúÖ±ÃæÄÚת¶¯¶øµ÷ÕûAB¶ÎµÄÇã½Ç¦È£¬BµãÓÐÒ»¶ÎÔ²»¡Ë³»¬Á¬½ÓAB¡¢BC¶Î£®µ÷ÕûºÃ½Ç¶È¦Èºó£¬½«AB¶ÎÒ²¹Ì¶¨£®ÊµÑéÒ»£ºÍ¨¹ýʵÑé²âÁ¿Ð¡»¬¿éÓë¹ìµÀÖ®¼äµÄ¶¯Ä¦²ÁÒòÊý¦Ì£º
£¨1£©½«Ð¡»¬¿é´ÓÇãб¹ìµÀAB¶ÎÉϵÄEµãÓɾ²Ö¹ÊÍ·Å£¬×îÖÕÍ£ÔÚˮƽ¹ìµÀÉÏGµã£»±£³ÖAB¶Î¹ìµÀµÄÇã½Ç¦È²»±ä£¬Èû¬¿é¶à²á´ÓͬһλÖÃEµã¾²Ö¹»¬Ï£¬È¡Ò»¸öƽ¾ùµÄGµãλÖã®Óÿ̶ȳ߲âÁ¿EµãÀëˮƽ¹ìµÀµÄÊúÖ±¸ß¶ÈΪh£¬EµãµÄÊúֱͶӰE¡äµãµ½GµãµÄˮƽ¾àÀëΪL£®ÔòС»¬¿éÓë¹ìµÀ¼äµÄ¶¯Ä¦²ÁÒòÊý¦ÌΪ$\frac{h}{L}$£®
£¨2£©±ä»»³ö·¢µãEµÄλÖúÍAB¶Î¹ìµÀµÄÇã½Ç¦È£¬Öظ´¶à´Î²Ù×÷£¬¶à´Î²â¦ÌÔÙÇ󯽾ùÖµ£®ÕâÑù×öµÄÄ¿µÄÊÇΪÁ˼õСżȻ£¨Ìϵͳ¡±»ò¡°Å¼È»¡±£©Îó²î£®
ʵÑé¶þ£ºÍ¨¹ýʵÑéÑéÖ¤Åöײ¹ý³ÌÖÐϵͳµÄ¡°¶¯Á¿Êغ㡱£¬²½ÖèÈçÏ£º
¢Ù²â³öÁ½¸ö»¬¿éµÄÖÊÁ¿m1¡¢m2ºÍÁ½»¬¿éÓë¹ìµÀ¼äµÄ¶¯Ä¦²ÁÒòÊý¦Ì1¡¢¦Ì2£»
¢Ú»¬¿é1´ÓE1µãÓɾ²Ö¹»¬ÏÂÍ£ÔÚG1µãµÄ¹ý³ÌÖУ¬ÔÚˮƽ¹ìµÀÉÏÕÒÒ»¸öFµã£¬ÓÃÖ±³ßÁ¿³öFµãµ½G1µãµÄ¾àÀëL1£¬ÈçͼÒÒËùʾ£»
¢Û»¬¿é2¾²Ö¹·ÅÔÚFµã£¬Èû¬¿é1ÒÀÈ»´ÓE1µã»¬ÏÂÈ¥Åöײ»¬¿é2£¬²â³ö»¬¿é1ֹͣʱµ½FµãµÄ¾àÀëL1¡äºÍ»¬¿é2ֹͣʱµ½FµãµÄ¾àÀëL2¡ä£®
£¨3£©ÈôÅöײ½üËÆÎªµ¯ÐÔÅöײ£¬ÎªÊ¹»¬¿é1Åöºó¼ÌÐøÏòÓÒÔ˶¯£¬ÔòÒªÇóm1´óÓÚm2£¨Ìî¡°´óÓÚ¡±¡°Ð¡ÓÚ¡±»ò¡°µÈÓÚ¡±£©£®
£¨4£©ÎªÁËÑéÖ¤¸ÃÅöײ¹ý³ÌϵͳµÄ¶¯Á¿Êغ㣬ֻÐèÒªÑéÖ¤µÈʽm1$\sqrt{{¦Ì}_{1}{L}_{1}}$=m1$\sqrt{{¦Ì}_{1}L{¡ä}_{1}}$+m2$\sqrt{{¦Ì}_{2}L{¡ä}_{2}}$£¨ÓÃm1¡¢m2¡¢¦Ì1¡¢¦Ì2¡¢L1¡¢L1¡ä¡¢L2¡ä±íʾ£©ÔÚÎó²îÔÊÐíµÄ·¶Î§ÄÚ³ÉÁ¢¼´¿É£®
·ÖÎö £¨1£©Ã÷È·Ô˶¯¹ý³Ì£¬¸ù¾Ý¶¯Äܶ¨Àí¼´¿ÉÇó³ö¶¯Ä¦²ÁÒòÊý£»
£¨2£©ÊµÑéÊÇÒªÑéÖ¤Á½¸öСÇòÅöײ¹ý³Ìϵͳ¶¯Á¿Êغ㣬ͬʱͨ¹ýƽÅ×Ô˶¯½«ËٶȵIJâÁ¿×ª»¯ÎªË®Æ½Éä³ÌµÄ²âÁ¿£»Îª·ÀֹСÇò·´µ¯£¬»¹Òª±£Ö¤ÈëÉäÇòÖÊÁ¿Òª´óÓÚ±»ÅöÇòÖÊÁ¿£»
ʵÑéÒªÑéÖ¤Á½¸öСÇòϵͳÅöײ¹ý³Ì¶¯Á¿Êغ㣬¼´ÒªÑéÖ¤m1v1=m1v1¡ä+m2v2£¬Í¨¹ý¶¯Äܶ¨Àí·ÖÎö¶ÔÓ¦µÄÅöײǰºóµÄËٶȼ´¿ÉµÃ³ö¶ÔÓ¦µÄ±í´ïʽ£®
½â´ð ½â£ºÉèBG³¤Îªs£¬´ÓAµ½BÓɶ¯Äܶ¨ÀíµÃ£º
mgh-¦Ìmgcos¦È$\frac{h}{sin¦È}$-¦Ìmgs=0-0£¬
±äÐεãº
mgh-¦Ìmg£¨$\frac{hcos¦È}{sin¦È}$+s£©=0
Óɼ¸ºÎ¹ØÏµ¿ÉÖª£º$\frac{hcos¦È}{sin¦È}$+S=L
½âµÃ£º¦Ì=$\frac{h}{L}$£»
£¨2£©¶à´Î²âÁ¿Ç󯽾ùÖµÖ»ÄܼõСżȻÎó²î£»
£¨3£©¸ù¾Ý¶¯Á¿Êغ㶨ÂÉ¿ÉÖª£¬Ê¹»¬¿é1Åöºó¼ÌÐøÏòÓÒÔ˶¯£¬ÔòÈëÉäСÇòµÄÖÊÁ¿´óÓÚ±»ÅöСÇòµÄÖÊÁ¿£»
£¨4£©¶ÔÓÚ´ÓFµã¿ªÊ¼µÄ¼õËÙ¹ý³Ì½øÐзÖÎö£¬¸ù¾Ý¶¯Äܶ¨Àí¿ÉÖª£º
-¦Ìmgx=0-$\frac{1}{2}$mv2£»
Ôò¿ÉÖª£¬Åöǰm1µÄËÙ¶Èv1=$\sqrt{{¦Ì}_{1}{L}_{1}}$£»
ÅöºóÁ½ÎïÌåµÄËÙ¶È·Ö±ðΪ£ºv1'=$\sqrt{{¦Ì}_{1}L{¡ä}_{1}}$£»v2'=$\sqrt{{¦Ì}_{2}L{¡ä}_{2}}$
¸ù¾Ý¶¯Á¿Êغ㶨ÂÉ¿ÉÖª£º
m1v1=m1v1¡¯+m2v2¡¯
´úÈë¶ÔÓ¦µÄËٶȿɵãº
Ó¦Âú×ãµÄ±í´ïʽΪ£º
m1$\sqrt{{¦Ì}_{1}{L}_{1}}$=m1$\sqrt{{¦Ì}_{1}L{¡ä}_{1}}$+m2$\sqrt{{¦Ì}_{2}L{¡ä}_{2}}$
¹Ê´ð°¸Îª£º
£¨1£©$\frac{h}{L}$
£¨2£©Å¼È»
£¨3£©´óÓÚ
£¨4£©m1$\sqrt{{¦Ì}_{1}{L}_{1}}$=m1$\sqrt{{¦Ì}_{1}L{¡ä}_{1}}$+m2$\sqrt{{¦Ì}_{2}L{¡ä}_{2}}$
µãÆÀ ʵÑé×¢ÒâÊÂÏ£¨1£©Ç°ÌáÌõ¼þ£º±£Ö¤ÅöײÊÇһάµÄ£¬¼´±£Ö¤Á½ÎïÌåÔÚÅö×²Ö®Ç°ÑØÍ¬Ò»Ö±ÏßÔ˶¯£¬Åöײ֮ºó»¹ÑØÕâÌõÖ±ÏßÔ˶¯£®£¨2£©×¢ÒâÃ÷ȷʵÑéÔÀí£¬ÖªµÀÅöײǰºóËٶȵļÆËã·½·¨£®
| A£® | BLv0 | B£® | 2BLv0 | C£® | $\frac{3}{4}$BLv0 | D£® | $\frac{1}{4}$BLv0 |
| A£® | Îï¿é´Ó¿ªÊ¼Ô˶¯µ½·µ»Øµ×¶ËµÄ¹ý³ÌÖÐÖØÁ¦µÄ³åÁ¿´óСΪ2mgt0 | |
| B£® | Îï¿é´Ót=0ʱ¿Ì¿ªÊ¼Ô˶¯µ½·µ»Øµ×¶ËµÄ¹ý³ÌÖж¯Á¿µÄ±ä»¯Á¿Îª-$\frac{3}{2}$mv0 | |
| C£® | Ð±ÃæÇã½Ç¦ÈµÄÕýÏÒֵΪ$\frac{5{v}_{0}}{8g{t}_{0}}$ | |
| D£® | ²»ÄÜÇó³ö3t0ʱ¼äÄÚÎï¿é¿Ë·þĦ²ÁÁ¦Ëù×öµÄ¹¦ |
| A£® | ·Ö×ÓÊÆÄÜÏȼõС£¬ºóÔö´ó | B£® | ·Ö×ÓÊÆÄÜÏÈÔö´ó£¬ÔÙ¼õС£¬ºóÓÖÔö´ó | ||
| C£® | ·Ö×ÓÊÆÄÜÏÈÔö´ó£¬ºó¼õС | D£® | ·Ö×ÓÊÆÄÜÏȼõС£¬ÔÙÔö´ó£¬ºóÓÖ¼õС |
| A£® | Á½´Îľ¿éÔ˶¯µÄ¼ÓËÙ¶È´óСÏàµÈ | B£® | FN+F¡äN£¼F | ||
| C£® | FN+F¡äN£¾F | D£® | FN£ºF¡äN=mB£ºmA |