ÌâÄ¿ÄÚÈÝ
16£®¢ÙÁ½Îï¿éͨ¹ý²»¿ÉÉ쳤µÄϸÉþÏàÁ¬½Ó£¬ÑØÉþ·ÖËÙ¶ÈÏàµÈ£»
¢Úϵͳ»úеÄÜÊØºã£®
P¡¢Q¡¢RÊÇÈý¸öÍêÈ«ÏàͬµÄÎï¿é£¬P¡¢QÓÃϸÉþÁ¬½Ó£¬·ÅÔÚË®Æ½Æøµæ×ÀÉÏ£®Îï¿éRÓëÇỬÂÖÁ¬½Ó£¬·ÅÔÚÕýÖм䣬a¡¢b¡¢cÊÇÈý¸ö¹âµçÃÅ£¬µ÷ÕûÈý¸ö¹âµçÃŵÄλÖã¬ÄÜʵÏÖͬʱÕڹ⣬Õû¸ö×°ÖÃÎÞ³õËÙ¶ÈÊÍ·Å£®
£¨1£©ÎªÁËÄÜÍê³ÉʵÑéÄ¿µÄ£¬³ýÁ˼ǼP¡¢Q¡¢RÈý¸öÕÚ¹âÆ¬µÄÕÚ¹âʱ¼ät1¡¢t2¡¢t3Í⣬»¹±ØÐè²âÁ¿µÄÎïÀíÁ¿ÓÐBCD£®
A£®P¡¢Q¡¢RµÄÖÊÁ¿M B£®Á½¸ö¶¨»¬ÂֵľàÀëd
C£®RµÄÕÚ¹âÆ¬µ½cµÄ¾àÀëH D£®ÕÚ¹âÆ¬µÄ¿í¶Èx
£¨2£©¸ù¾Ý×°ÖÿÉÒÔ·ÖÎö³öP¡¢QµÄËÙ¶È´óСÏàµÈ£¬ÑéÖ¤±í´ïʽΪt1=t2£®
£¨3£©ÈôÒªÑéÖ¤Îï¿éRÓëÎï¿éPµÄÑØÉþ·ÖËÙ¶ÈÏàµÈ£¬ÔòÑéÖ¤±í´ïʽΪ$\frac{{t}_{3}}{{t}_{1}}=\frac{2H}{\sqrt{4{H}^{2}+{d}^{2}}}$£®
£¨4£©ÈôÒÑÖªµ±µØÖØÁ¦¼ÓËÙ¶Èg£¬ÔòÑé֤ϵͳ»úеÄÜÊØºãµÄ±í´ïʽΪgH=$\frac{1}{2}{x}^{2}£¨\frac{1}{{t}_{1}^{2}}+\frac{1}{{t}_{2}^{2}}+\frac{1}{{t}_{3}^{2}}£©$£®
·ÖÎö £¨1£©¸ù¾ÝÑé֤ϵͳ»úеÄÜÊØºãÐèÒªÑéÖ¤µÄ±í´ïʽ£¬ÕÒ³öÐèÒª²âÁ¿µÄÎïÀíÁ¿£»
£¨2£©·Ö±ðÇó³öP¡¢QµÄËÙ¶È´óС£¬ÔÙ¸ù¾ÝÁ½ÎïÌåËÙ¶ÈÏàµÈ£¬Çó³öÐèÒªÑéÖ¤µÄ±í´ïʽ£»
£¨3£©·Ö±ðÇó³öP¡¢RµÄËÙ¶È´óС£¬ÔÙ¸ù¾ÝÁ½ÎïÌåËÙ¶ÈÏàµÈ£¬Çó³öÐèÒªÑéÖ¤µÄ±í´ïʽ£»
£¨4£©¸ù¾Ý»úеÄÜÊØºã¶¨ÂÉÁÐʽ£¬»¯¼ò£¬Çó³öÑé֤ϵͳ»úеÄÜÊØºãµÄ±í´ïʽ£®
½â´ð ½â£º£¨1£©ÒªÖ¤Ã÷¢Ù£¬ÐèÒª²âÁ¿dºÍH£¬Í¨¹ý¼¸ºÎ¹ØÏµ¿ÉÖ¤Ã÷ÑØÉþ·ÖËÙ¶ÈÏàµÈ£»ÒªÖ¤Ã÷¢Ú£¬»¹ÐèÒª²âÁ¿HºÍx£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½ºÍ¶¯Äܶ¨ÀíÁÐʽ¿ÉÑéÖ¤»úеÄÜÊØºã£¬¹ÊÐèÒª²âÁ¿µÄÎïÀíÁ¿ÓÐd£¬H£¬x£®¹ÊBCDÕýÈ·£»
¹ÊÑ¡£ºBCD£®
£¨2£©Îï¿éPµÄËÙ¶È${v}_{P}=\frac{x}{{t}_{1}}$£¬Îï¿éQµÄËÙ¶È${v}_{Q}=\frac{x}{{t}_{2}}$£¬Òò´Ë·ÖÎö³öP¡¢QµÄËÙ¶È´óСÏàµÈ£¬¼´ÐèÒªÑéÖ¤±í´ïʽ$\frac{x}{{t}_{1}}=\frac{x}{{t}_{2}}$£¬»¯¼ò¿ÉµÃÑéÖ¤t1=t2¼´¿É£»
£¨3£©Îï¿éRµÄËÙ¶È${v}_{R}=\frac{x}{{t}_{3}}$£¬ÒªÑéÖ¤Îï¿éRÓëÎï¿éPµÄÑØÉþ·ÖËÙ¶ÈÏàµÈ£¬ÔòÐèÒªÑéÖ¤±í´ïʽ$\frac{{t}_{3}}{{t}_{1}}=\frac{2H}{\sqrt{4{H}^{2}+{d}^{2}}}$£»
£¨4£©Õû¸öϵͳ¼õÉٵĻúеÄÜÊÇ¡÷E=MgH£¬Ôö¼ÓµÄ»úеÄÜÊÇ$¡÷{E}^{¡ä}=\frac{1}{2}M{v}_{P}^{2}+\frac{1}{2}M{v}_{Q}^{2}+\frac{1}{2}M{v}_{R}^{2}$
ÒªÑéÖ¤»úеÄÜÊØºã£¬Ôò¡÷E=¡÷E¡ä£¬¼´ÑéÖ¤±í´ïʽgH=$\frac{1}{2}{x}^{2}£¨\frac{1}{{t}_{1}^{2}}+\frac{1}{{t}_{2}^{2}}+\frac{1}{{t}_{3}^{2}}£©$£®
¹Ê´ð°¸Îª£º£¨1£©BCD£»£¨2£©t1=t2£»£¨3£©$\frac{{t}_{3}}{{t}_{1}}=\frac{2H}{\sqrt{4{H}^{2}+{d}^{2}}}$£»£¨4£©gH=$\frac{1}{2}{x}^{2}£¨\frac{1}{{t}_{1}^{2}}+\frac{1}{{t}_{2}^{2}}+\frac{1}{{t}_{3}^{2}}£©$£®
µãÆÀ ±¾Ì⿼²éÁËÑéÖ¤»úеÄÜÊØºã¶¨ÂɵÄʵÑ飬½âÌâµÄ¹Ø¼üÊÇÃ÷ȷʵÑéÔÀí£¬ÕÒ³ö¸÷ÎïÀíÁ¿Ö®¼äµÄ¹ØÏµ£¬ÔÙ½áºÏ»úеÄÜÊØºã¶¨ÂÉд³öÐèÒªÑéÖ¤µÄ±í´ïʽ£®
| A£® | ÊúÖ±ÏòÉÏ | B£® | ÊúÖ±ÏòÏ | C£® | ´¹Ö±ÓÚÖ½ÃæÏòÄÚ | D£® | ´¹Ö±ÓÚÖ½ÃæÏòÍâ |
| A£® | ÊéËùÊܵ½µÄÖØÁ¦ | B£® | ×ÀÃæËùÊܵ½µÄÖØÁ¦ | ||
| C£® | ÊéµÄÐαä | D£® | ×ÀÃæµÄÐαä |
| A£® | ÈçͼÊúÖ±Ìá×ÅˮͰÔÚˮƽµØÃæÉÏÔÈËÙǰ½ø | |
| B£® | Èçͼ¿¸×ÅÃ×´üÂýÂýÅÀÉÏÂ¥ÌÝ | |
| C£® | ÈçͼÓÃÁ¦ÍÆÆû³µ£¬Æû³µÃ»¶¯ | |
| D£® | Èçͼ¾ÙןÜÁåԵز»¶¯ |
| t/s | 0 | 1 | 2 | 3 | 4 |
| x/m | 0 | 5 | -4 | -1 | -7 |
| A£® | µÚ4sÄÚµÄÎ»ÒÆ×î´ó | B£® | ǰ4sÄÚµÄÎ»ÒÆ×î´ó | ||
| C£® | µÚ2sÄڵķ³Ì×î´ó | D£® | ǰ2sÄڵķ³Ì×î´ó |