(本小题满分12分)
如图,在三棱柱中,平面为的中点.
(1) 求证:∥平面;
(2) 求二面角的平面角的余弦值.
(本小题满分12分)如图,三棱柱ABC—A1B1C1中,侧棱底面ABC,为边长为2的正三角形,点P在A1B上,且ABCP。
(1)证明:P为A1B中点;
(2)若A1BAC1,求二面角B1-PC-B的余弦值。
如图4,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,,点E、G分别是CD、PC的中点,点F在PD上,且PF:FD=21
(Ⅰ)证明:;
(Ⅱ)证明:BG面AFC.
如图,四棱锥的底面为正方形,侧棱底面,且,分别是线段的中点.
(Ⅰ)求证://平面;
(Ⅱ)求证:平面;
(Ⅲ)求二面角的大小.
如图:已知正方体ABCD-A1B1C1D1中,E为棱CC1的中点.如果一只蜜蜂在正方体ABC-A1B1C1D1内部任意飞,则它飞入三棱锥A1-BDE内部的概率为( )
A. B.
C. D.
一个几何体是由圆柱和三棱锥组合而成,点、、在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图所示,其中,,,.
(1)求证:;
(2)求二面角的平面角的大小.
.如图:长为3的线段PQ与边长为2的正方形ABCD垂直相交于其中心O(PO>OQ).(1)若二面角P-AB-Q的正切值为-3,试确定O在线段PQ的位置;(2)在(1)的前提下,以P,A,B,C,D,Q为顶点的几何体PABCDQ是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.
如图,菱形的边长为,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面平面;
(Ⅲ)求三棱锥的体积.