设复数,其中为虚数单位,为实数,.若是方程的一个根,且在复平面内所对应的点在第一象限,求与的值.
下列说法正确的是( )
A.任何事件的概率总是在(0,1)之间
B.频率是客观存在的,与试验次数无关
C.随着试验次数的增加,频率一般会越来越接近概率
D.概率是随机的,在试验前不能确定
从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是 ( )
A.至少有1个白球,都是白球
B.至少有1个白球,至少有1个红球
C.恰有1个白球,恰有2个白球
D.至少有1个白球,都是红球
在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC的概率。
函数f(x)=x2-x-2,x∈[-5,5],那么任取一点x0∈[-5,5],使f(x0)≤0的概率是( )
A.1 B. C. D.
. 若平面向量,满足,平行于轴,,则 .
如图,圆锥的顶点为S,底面中心为O.OC是与底面直径AB垂直的一条半径,D是母线SC的中点.
(1)求证:BC与SA不可能垂直;
(2)若圆锥的高为4,异面直线AD与BC所成角的大小为,求圆锥的体积.
在复平面内,复数(是虚数单位)对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
已知以向量v=为方向向量的直线l过点,抛物线C:y2=2px(p>0)的顶点关于直线l的对称点在该抛物线的准线上.
(1)求抛物线C的方程;
(2)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若·+p2=0 (O为原点,A、B异于原点),试求点N的轨迹方程.
根据下列条件求椭圆的标准方程:
(1)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P作长轴的垂线恰好过椭圆的一个焦点;
(2)经过两点A(0,2)和B.