搜索
盒子中装着标有数字1、2、3、4的卡片分别有1张、2张、3张、4张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用ξ表示取出的3张卡片的最大数字,求:
(Ⅰ)取出的3张卡片上的数字互不相同的概率;
(Ⅱ)随机变量ξ的概率分布和数学期望;
(Ⅲ)设取出的三张卡片上的数字之和为η,求P(η≥7).
点M与点F(3,0)的距离比它到直线x+1=0的距离多2,则点M的轨迹方程为________.
4个男生,3个女生站成一排.(必须写出解析式再算出结果才能给分)
(1)3个女生必须排在一起,有多少种不同的排法?
(2)任何两女生彼此不相邻,有多少种不同的排法?
(3)甲,乙二人之间恰好有三个人,有多少种不同的排法?
(4)甲,乙两生相邻,但都不与丙相邻,有多少种不同的排法?
已知函数f(x)是定义在R上的奇函数,且在定义域上单调递增.当x∈[1-a,+∞)时,不等式f(x-2a)+f(x)>0恒成立,则实数a的取值范围是________.
α、β为锐角a=sin(α+β),b=sinα+cosα,则a、b之间关系为
A.
a>b
B.
b>a
C.
a=b
D.
不确定
过原点且倾斜角为60°的直线被圆x
2
+y
2
-4y=0所截得的弦长为________.
已知变量x,y满足约束条件
,若目标函数z=x-3y的最小值是-4,则实数k=________.
已知正实数 x,y满足x+y=1,则
的最小值等于
A.
5
B.
C.
D.
已知椭圆
上两个相邻顶点为A、C,且B为椭圆上的动点,求三角形△ABC面积的最大值与最小值.
如图,椭圆C:
(a>b>0)的一个焦点是F(-
,0),离心率e=
,过点A(0,-2)且不与y轴重合的直线l与椭圆C相交于不同的两点P、Q
(1)求椭圆C的方程;
(2)若点F到直线l的距离为2,求直线l的方程;
(3)问在y轴上是否存在一个定点B,使得直线PB与椭圆C的另一个交点R是点Q关于y轴的对称点?若存在,求出定点B的坐标;若不存在,请说明理由.
0
4598
4606
4612
4616
4622
4624
4628
4634
4636
4642
4648
4652
4654
4658
4664
4666
4672
4676
4678
4682
4684
4688
4690
4692
4693
4694
4696
4697
4698
4700
4702
4706
4708
4712
4714
4718
4724
4726
4732
4736
4738
4742
4748
4754
4756
4762
4766
4768
4774
4778
4784
4792
266669
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案