班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.若这8位同学的数学、物理分数对应如下表:
根据如表数据用变量y与x的相关关系
(1)画出样本的散点图,并说明物理成绩y与数学成绩x之间是正相关还是负相关?
(2)求y与x的线性回归直线方程(系数精确到0.01),并指出某个学生数学83分,物理约为多少分?
参考公式:回归直线的方程是:
=bx+a,
其中b=
,a=
-b
;其中
i是与xi对应的回归估计值.
参考数据:
=77.5,
=85,
(x1-
)2≈1050,
(x1-
)(y1-
)≈688.
| 学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 数学分数x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
| 物理分数y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
(1)画出样本的散点图,并说明物理成绩y与数学成绩x之间是正相关还是负相关?
(2)求y与x的线性回归直线方程(系数精确到0.01),并指出某个学生数学83分,物理约为多少分?
参考公式:回归直线的方程是:
| ? |
| y |
其中b=
| |||||||
|
. |
| y |
. |
| x |
| ? |
| y |
参考数据:
. |
| x |
. |
| y |
| 8 |
| i=1 |
. |
| x |
| 8 |
| i=1 |
. |
| x |
. |
| y |
甲、乙两人约定上午7:00至8:00之间到某站乘公共汽车,在这段时间内有2班公共汽车,它们开车的时刻分别是7:30和8:00,甲、乙两人约定,见车就乘,则甲、乙同乘一车的概率为(假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在7时到8时的任何时刻到达车站是等可能的)( )
A、
| ||
B、
| ||
C、
| ||
D、
|
袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则
是下列哪个是事件的概率( )
| 8 |
| 9 |
| A、颜色全同 | B、颜色不全同 |
| C、颜色全不同 | D、无红球 |