某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品.图1是甲流水线样本的频率分布直方图,表1是乙流水线样本频数分布表.

(1)若以频率作为概率,试估计从甲流水线上任取5件产品,求其中合格品的件数X的数学期望;
(2)从乙流水线样本的不合格品中任意取2件,求其中超过合格品重量的件数Y的分布列;
(3)由以上统计数据完成下面2×2列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
附:下面的临界值表供参考:
(参考公式:K2=
,其中n=a+b+c+d)
0 41224 41232 41238 41242 41248 41250 41254 41260 41262 41268 41274 41278 41280 41284 41290 41292 41298 41302 41304 41308 41310 41314 41316 41318 41319 41320 41322 41323 41324 41326 41328 41332 41334 41338 41340 41344 41350 41352 41358 41362 41364 41368 41374 41380 41382 41388 41392 41394 41400 41404 41410 41418 266669
(1)若以频率作为概率,试估计从甲流水线上任取5件产品,求其中合格品的件数X的数学期望;
(2)从乙流水线样本的不合格品中任意取2件,求其中超过合格品重量的件数Y的分布列;
(3)由以上统计数据完成下面2×2列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
| 甲流水线 | 乙流水线 | 合计 | |
| 合格品 | a= | b= | |
| 不合格品 | c= | d= | |
| 合 计 | n= |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2=
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |