某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;
(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据x1,x2,…,xa的样本方差s2=
[(x1-
)2+(x1-
)2+…+(xn-
)2],其中
为样本平均数.
(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;
(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:
| 品种甲 | 403 | 397 | 390 | 404 | 388 | 400 | 412 | 406 |
| 品种乙 | 419 | 403 | 412 | 418 | 408 | 423 | 400 | 413 |
附:样本数据x1,x2,…,xa的样本方差s2=
| 1 |
| n |
. |
| x |
. |
| x |
. |
| x |
. |
| x |
已知球的直径SC=4,A,B是该球球面上的两点,AB=
,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为( )
| 3 |
A、3
| ||
B、2
| ||
C、
| ||
| D、1 |
若
,
,
为单位向量,且
•
=0,(
-
)•(
-
)≤0,则|
+
-
| 的最大值为( )
| a |
| b |
| c |
| a |
| b |
| a |
| c |
| b |
| c |
| a |
| b |
| c |
A、
| ||
| B、1 | ||
C、
| ||
| D、2 |
设函数f(x)=
,则满足f(x)≤2的x的取值范围是( )
|
| A、[-1,2] |
| B、[0,2] |
| C、[1,+∞) |
| D、[0,+∞) |