【题目】如图,已知在棱柱的面底是菱形,且面ABCD,
为棱的中点,M为线段的中点.
(1)求证:平面平面;
(2)求三棱锥的体积.
【题目】设抛物线的焦点为,过点作垂直于轴的直线与抛物线交于,两点,且以线段为直径的圆过点.
(1)求抛物线的方程;
(2)若直线与抛物线交于,两点,点为曲线:上的动点,求面积的最小值.
【题目】已知函数为偶函数,且在上单调递减,则的解集为
A. B.
C. D.
【题目】已知函数, .
(1)若时,求函数的最小值;
(2)若,证明:函数有且只有一个零点;
(3)若函数有两个零点,求实数的取值范围.
【题目】已知圆C的圆心为(1,1),直线与圆C相切.
(1)求圆C的标准方程;
(2)若直线过点(2,3),且被圆C所截得的弦长为2,求直线的方程.
【题目】已知抛物线的焦点为,过点垂直于轴的直线与抛物线相交于两点,抛物线在两点处的切线及直线所围成的三角形面积为.
(2)设是抛物线上异于原点的两个动点,且满足,求面积的取值范围.
【题目】如图,在棱长为2的正方体中,分别为的中点,点在平面内,若直线与平面没有公共点,则线段长的最小值是( )
A.B.
C.D.
【题目】如图,在四棱锥中,底面是菱形,,为等边三角形,是线段上的一点,且平面.
(1)求证:为的中点;
(2)若为的中点,连接,,,,平面平面,,求三棱锥的体积.
【题目】已知圆C:及点P(0,1),过点P的直线与圆交于A、B两点.
(1)若弦长求直线AB的斜率;
(2)求△ABC面积的最大值,及此时弦长
【题目】如图四边形ABCD为菱形,G为AC与BD交点,,
(I)证明:平面平面;
(II)若, 三棱锥的体积为,求该三棱锥的侧面积.