【题目】近期,某市公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数, 表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示:
根据以上数据,绘制了散点图.
(1)根据散点图判断,在推广期内,与 (均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表1中的数据,建立关于的回归方程,并预测活动推出第8天使用扫码支付的人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下
已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受折优惠,有的概率享受8折优惠,有的概率享受9折优惠.根据所给数据以事件发生的频率作为相应事件发生的概率,试估计从20名乘客从中随机抽取1人,恰好享受8折优惠的概率 .
参考数据:
66 | 1.54 | 2711 | 50.12 | 3.47 |
其中,
参考公式:
对于一组数据 ,其回归直线的斜率和截距的最小二乘估计公式分别为:, .
【题目】Monte-Carlo方法在解决数学问题中有广泛的应用.下面利用Monte-Carlo方法来估算定积分.考虑到等于由曲线,轴,直线所围成的区域的面积,如图,在外作一个边长为1正方形OABC.在正方形OABC内随机投掷n个点,若n个点中有m个点落入M中,则M的面积的估计值为,此即为定积分的估计值.现向正方形OABC中随机投掷10000个点,以X表示落入M中的点的数目.
(1)求X的期望和方差;
(2)求用以上方法估算定积分时,的估计值与实际值之差在区间(-0.01,0.01)的概率.
附表:
1899 | 1900 | 1901 | 2099 | 2100 | 2101 | |
0.0058 | 0.0062 | 0.0067 | 0.9933 | 0.9938 | 0.9942 |
【题目】已知椭圆: 的离心率为,且椭圆过点.过点做两条相互垂直的直线、分别与椭圆交于、、、四点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若, ,探究:直线是否过定点?若是,请求出定点坐标;若不是,请说明理由.
【题目】一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验.测得的数据如下:
零件数x(个) | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
加工时间y(分) | 62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 | 115 | 122 |
(1)y与x是否具有线性相关关系?
(2)如果y与x具有线性相关关系,求回归直线方程;
(3)根据求出的回归直线方程,预测加工200个零件所用的时间为多少?
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线=x+的斜率和截距的最小二乘估计分别为=,=-.