【题目】高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从洛阳的高中生中,随机抽取了55人,从上海的高中生中随机抽取了45人进行答题.洛阳高中生答题情况是:选择家的占
、选择朋友聚集的地方的占
、选择个人空间的占
.上海高中生答题情况是:选择朋友聚集的地方的占
、选择家的占
、选择个人空间的占
.
(1)请根据以上调查结果将下面
列联表补充完整,并判断能否有
的把握认为“恋家(在家里感到最幸福)”与城市有关:
在家里最幸福 | 在其它场所最幸福 | 合计 | |
洛阳高中生 | |||
上海高中生 | |||
合计 |
(2) 从被调查的不“恋家”的上海学生中,用分层抽样的方法选出4人接受进一步调查,从被选出的4 人中随机抽取2人到洛阳交流学习,求这2人中含有在“个人空间”感到幸福的学生的概率.
附:
,其中
d.
![]()
【题目】铁人中学高二学年某学生对其亲属30人
饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)
![]()
(Ⅰ)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;
(Ⅱ)根据以上数据完成下列
的列联表:
主食蔬菜 | 主食肉类 | 合计 | |
50岁以下人数 | |||
50岁以上人数 | |||
合计人数 |
(Ⅲ)能否在犯错误的概率不超过0.01的前提下认为其亲属的饮食习惯与年龄有关系?
附:
.
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】如图,曲边三角形中,线段
是直线
的一部分,曲线段
是抛物线
的一部分.矩形
的顶点分别在线段
,曲线段
和
轴上.设点
,记矩形
的面积为
.
![]()
(Ⅰ)求函数
的解析式并指明定义域;
(Ⅱ)求函数
的最大值.
【答案】(Ⅰ) 定义域为
;(Ⅱ) 在
时,
取得最大值
.
【解析】试题分析:( I )根据点
在直线
上,
在抛物线
上,结合图形,可得点
,从而可得函数
的解析式,联立直线与抛物线的方程,即可求得定义域;(II)对函数
求导,利用导数研究函数的单调性,从而可求得函数
的最大值.
试题解析:( I )令
,
解得
(舍)
因为点![]()
所以
,
其定义域为
(II)因为
令
,得
,
(舍)
所以
的变化情况如下表
|
|
|
|
|
| 0 |
|
|
| 极大 |
|
因为
是函数
在
上的唯一的一个极大值,
所以在
时,函数
取得最大值
.
点睛:利用导数解答函数最值的一般步骤:第一步:利用
或
求单调区间;第二步:解
得两个根
;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.
【题型】解答题
【结束】
16
【题目】在各项均为正数的数列
中,
且
.
(Ⅰ)当
时,求
的值;
(Ⅱ)求证:当
时,
.
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理,
得到下表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程
,其中
)