题目内容
【题目】已知函数,其中.
(1)函数的图象能否与轴相切?若能,求出实数,若不能,请说明理由;
(2)讨论函数的单调性.
【答案】(1)见解析;(2)见解析.
【解析】分析:第一问首先对函数求导,之后设出切点坐标,应用切线的斜率等于零以及对应点处的函数值等于零,得到方程组无解,说明没有满足条件的点,从而得到结论;对于第二问,求出函数的导函数,结合其导数的符号,来确定函数在相应区间上的单调性.
详解:(1)由于.
假设函数的图象与轴相切于点,
则有,即.
显然,将代入方程中,
得.显然此方程无解.
故无论取何值,函数的图象都不能与轴相切.
(2)由于,
当时,,当时,,递增,
当时,,递减;
当时,由得或,
①当时,,
当时,,递增,
当时,,递减,
当,,递增;
②当时,,递增;
③当时,,
当时,,递增,
当时,,递减,
当时,,递增.
综上,当时,在上是减函数,在上是增函数;
当时,在上是增函数,在上是减函数;
当时,在上是增函数;
当时,在上是增函数,在上是减函数.
练习册系列答案
相关题目