题目内容

【题目】(本小题满分12分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴的直线与椭圆相交于两点.

1)求椭圆的方程;

2)求的取值范围.

【答案】1;(2

【解析】试题分析:(1)设椭圆的方程,若焦点明确,设椭圆的标准方程,结合条件用待定系数法求出的值,若不明确,需分焦点在轴和轴上两种情况讨论;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.

试题解析:解:(1)由题意知

.又双曲线的焦点坐标为

椭圆的方程为.

2)若直线的倾斜角为,则

当直线的倾斜角不为时,直线可设为

,由

,综上所述:范围为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网