【题目】在平面直角坐标系中,曲线的参数方程为(为参数, ),以原点为极点, 轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线与的直角坐标方程;
(2)当与有两个公共点时,求实数的取值范围.
【题目】如图,已知椭圆: ,其左右焦点为、,过点的直线交椭圆于, 两点,线段的中点为, 的中垂线与轴和轴分别交于、两点,且、、构成等差数列.
(1)求椭圆的方程;
(2)记的面积为, (为原点)的面积为,试问:是否存在直线,使得?说明理由.
【题目】如图四棱锥中, 平面,底面是梯形, , , , , , 为的中点, 为上一点,且().
(1)若时,求证: 平面;
(2)若直线与平面所成角的正弦值为,求异面直线与直线所成角的余弦值.
【题目】平面直角坐标系xOy中,F(-1, 0)是椭圆的左焦点,过点F且方向向量为的光线,经直线反射后通过左顶点D.
(I)求椭圆的方程;
(II)过点F作斜率为的直线交椭圆于A, B两点,M为AB的中点,直线OM (0为原点)与直线交于点P,若满足,求的值.
【题目】如图2,在三棱锥A-BCD中,AB=CD=4, AC=BC=AD=BD=3.
(I)证明:ABCD;
(II) E在线段BC上,BE=2EC, F是线段AC的中点,求平面ADE与平面BFD所成锐二面角的余弦值
【题目】已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f'(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)
(1)求b关于a的函数关系式,并写出定义域;
(2)证明:b2>3a;
(3)若f(x),f'(x)这两个函数的所有极值之和不小于-,求a的取值范围.
【题目】已知函数f(x)=ex-x2+a,x∈R的图象在x=0处的切线方程为y=bx.(e≈2.718 28)
(1)求函数f(x)的解析式;
(2)当x∈R时,求证:f(x)≥-x2+x;
(3)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.
【题目】已知直线y=x+b与函数f(x)=ln x的图象交于两个不同的点A,B,其横坐标分别为x1,x2,且x1<x2.
(1)求b的取值范围;
(2)当x2≥2时,证明x1·<2.
【题目】设函数f(x)=ex-1-x-ax2.
(1)若a=0,求f(x)的单调区间;
(2)若当x≥0时,f(x)≥0,求a的取值范围.
【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线.以原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线、的极坐标方程;
(2)射线与曲线、分别交于点(且均异于原点)当时,求的最小值.