题目内容

【题目】如图,已知椭圆 ,其左右焦点为,过点的直线交椭圆 两点,线段的中点为 的中垂线与轴和轴分别交于两点,且构成等差数列.

(1)求椭圆的方程;

(2)记的面积为 为原点)的面积为,试问:是否存在直线,使得?说明理由.

【答案】(1)椭圆的方程为;(2)方程为.

【解析】试题分析:(1)第一问比较简单直接列一个方程组,解出a,b,c即可. (2)第二问首先需要设出直线的方程),再利用和相似得到,化简这个方程需要点G和点D的坐标,利用韦达定理求出点G和点D的坐标代入解关于k的方程即可.

试题解析:(1)因为构成等差数列,

所以,所以

又因为,所以

所以椭圆的方程为

(2)假设存在直线,使得,显然直线不能与 轴垂直.

方程为),

将其代入,整理得

,所以

故点的横坐标为,所以

,因为,所以

解得,即

相似,且,则,,

整理得,因此

所以存在直线,方程为

练习册系列答案
相关题目

【题目】如图,在四棱锥中,底面为菱形, 平面 分别是 的中点.

(1)证明:

(2)设为线段上的动点,若线段长的最小值为,求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】试题分析:(1)证明线线垂直则需证明线面垂直,根据题意易得然后根据等边三角形的性质可得,因此平面,从而得证(2)先找到EH什么时候最短,显然当线段长的最小时, ,在中, ,∴,由中, ,∴.然后建立空间直角坐标系,写出两个面法向量再根据向量的夹角公式即可得余弦值

解析:(1)证明:∵四边形为菱形,

为正三角形.又的中点,∴.

,因此.

平面 平面,∴.

平面 平面

平面.又平面,∴.

(2)如图, 上任意一点,连接 .

当线段长的最小时, ,由(1)知

平面 平面,故.

中,

中, ,∴.

由(1)知 两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,又 分别是 的中点,

可得

所以 .

设平面的一法向量为

因此

,则

因为 ,所以平面

为平面的一法向量.又

所以 .

易得二面角为锐角,故所求二面角的余弦值为.

型】解答
束】
20

【题目】2018湖北七市(州)教研协作体3月高三联考已知椭圆 的左顶点为,上顶点为,直线与直线垂直,垂足为点,且点是线段的中点.

I)求椭圆的方程;

II)如图,若直线 与椭圆交于 两点,点在椭圆上,且四边形为平行四边形,求证:四边形的面积为定值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网