【题目】在极坐标系中,极点为O,点A的极坐标为(2, ),以OA为斜边作等腰直角三角形OAB(其中O,A,B按逆时针方向分布)(1)求点B的极坐标;(2)求三角形外接圆的极坐标方程.
【题目】一个口袋中装有个红球且和个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.
(1)用表示一次摸奖中奖的概率;
(2)若,设三次摸奖(每次摸奖后球放回)恰好有次中奖,求的数学期望;
(3)设三次摸奖(每次摸奖后球放回)恰好有一次中奖的概率,当取何值时, 最大?
【题目】设a∈R,函数f(x)=x|x﹣a|﹣a.(1)若f(x)为奇函数,求a的值;(2)若对任意的x∈[2,3],f(x)≥0恒成立,求a的取值范围;(3)当a>4时,求函数y=f(f(x)+a)零点的个数.
【题目】设函数f(x)=x(x﹣1)2 , x>0.(1)求f(x)的极值;(2)设0<a≤1,记f(x)在(0,a]上的最大值为F(a),求函数 的最小值;(3)设函数g(x)=lnx﹣2x2+4x+t(t为常数),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的实数m有且只有一个,求实数m和t的值.
【题目】已知直线x﹣2y+2与圆C:x2+y2﹣4y+m=0相交,截得的弦长为 (1)求圆C的方程;(2)过点M(﹣1,0)作圆C的切线,求切线的直线方程;(3)若抛物线y=x2上任意三个不同的点P、Q、R,且满足直线PQ和PR都与圆C相切,判断直线QR与圆C的位置关系,并加以证明.
【题目】如图,在P地正西方向8km的A处和正东方向1km的B处各有一条正北方向的公路AC和BD,现计划在AC和BD路边各修建一个物流中心E和F,为缓解交通压力,决定修建两条互相垂直的公路PE和PF,设∠EPA=α(0<α< ). (1)为减少对周边区域的影响,试确定E,F的位置,使△PAE与△PFB的面积之和最小;(2)为节省建设成本,试确定E,F的位置,使PE+PF的值最小.
【题目】某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各2张,让孩子从盒子里任取3张卡片,按卡片上最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字
(1)求取出的3张卡片上的数字互不相同的概率;
(2)求随机变量x的分布列;
(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率
【题目】设△ABC是边长为4的正三角形,点P1 , P2 , P3 , 四等分线段BC(如图所示) (1)P为边BC上一动点,求 的取值范围?(2)Q为线段AP1上一点,若 =m + ,求实数m的值.
【题目】已知椭圆: 过点,离心率为.
(1)求椭圆的方程;
(2), 是过点且互相垂直的两条直线,其中交圆于, 两点, 交椭圆于另一个点,求面积取得最大值时直线的方程.
【题目】已知α,β∈(0, )且sin(α+2β)= (1)若α+β= ,求sinβ的值;(2)若sinβ= ,求cosα的值.