【题目】为了鼓励市民节约用电,实行“阶梯式”电价,某边远山区每户居民月用电量划分为三档:月用电量不超过150度,按0.6元/度收费,超过150度但不超过250度的部分每度加价0.1元,超过250度的部分每度再加价0.3元收费.
(1)求该边远山区某户居民月用电费用
(单位:元)关于月用电量
(单位:度)的函数解析式;
(2)已知该边远山区贫困户的月用电量
(单位:度)与该户长期居住的人口数
(单位:人)间近似地满足线性相关关系:
(
的值精确到整数),其数据如表:
| 14 | 15 | 17 | 18 |
| 161 | 168 | 191 | 200 |
现政府为减轻贫困家庭的经济负担,计划对该边远山区的贫困家庭进行一定的经济补偿,给出两种补偿方案供选择:一是根据该家庭人数,每人每户月补偿6元;二是根据用电量每人每月补偿
(
为用电量)元,请根据家庭人数
分析,一个贫困家庭选择哪种补偿方式可以获得更多的补偿?
附:回归直线
中斜率和截距的最小二乘法估计公式分别为:
,
.
参考数据:
,
,
,
,
,
,
,
,
.
【题目】某学校研究性学习小组调查学生使用智能手机对学习成绩的影响,部分统计数据如下表:
使用智能手机 | 不使用智能手机 | 总计 | |
学习成绩优秀 | 4 | 8 | 12 |
学习成绩不优秀 | 16 | 2 | 18 |
总计 | 20 | 10 | 30 |
(Ⅰ)根据以上
列联表判断,能否在犯错误的概率不超过0.005的前提下认为使用智能手机对学习成绩有影响?
(Ⅱ)从学习成绩优秀的12名同学中,随机抽取2名同学,求抽到不使用智能手机的人数
的分布列及数学期望.
参考公式:
,其中![]()
参考数据:
| 0.05 | 0,。025 | 0.010 | 0.005 | 0.001 |
| 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】涡阳县某华为手机专卖店对市民进行华为手机认可度的调查,在已购买华为手机的
名市民中,随机抽取
名,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如图:
分组(岁) | 频数 |
|
|
|
|
|
|
|
|
|
|
合计 |
|
(1)求频数分布表中
、
的值,并补全频率分布直方图;
(2)在抽取的这
名市民中,从年龄在
、
内的市民中用分层抽样的方法抽取
人参加华为手机宣传活动,现从这
人中随机选取
人各赠送一部华为手机,求这
人中恰有
人的年龄在
内的概率.