【题目】已知椭圆,上顶点为,焦点为,点是椭圆上异于点的不同的两点,且满足直线与直线斜率之积为.
(1)若为椭圆上不同于长轴端点的任意一点,求面积的最大值;
(2)试判断直线是否过定点;若是,求出定点坐标;若否,请说明理由.
【题目】如图,在三棱台中, , 平面, , , , 分别为的中点.
(1)求证: 平面;
(2)求平面与平面所成角(锐角)的大小.
【题目】我们称满足下面条件的函数y=f(x)为“ξ函数”:存在一条与函数y=f(x)的图象有两个不同交点(设为P(x1 , y1)Q(x2 , y2))的直线,y=(x)在x= 处的切线与此直线平行.下列函数: ①y= ②y=x2(x>0)③y= ④y=lnx,其中为“ξ函数”的是(将所有你认为正确的序号填在横线上)
【题目】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80 m.经测量,点A位于点O正北方向60 m处,点C位于点O正东方向170 m处(OC为河岸),tan∠BCO=.
(1)求新桥BC的长;
(2)当OM多长时,圆形保护区的面积最大?
【题目】直三棱柱中,底面是边长为2的正三角形, 是棱的中点,且.
(1)若点为棱的中点,求异面直线与所成角的余弦值;
(2)若点在棱上,且平面,求线段的长.
【题目】已知动圆过定点 ,且与定直线相切,动圆圆心的轨迹方程为,直线过点交曲线于两点.
(1)若交轴于点,求的取值范围;
(2)若的倾斜角为,在上是否存在点使为正三角形?若能,求点的坐标;若不能,说明理由.
【题目】已知椭圆: 的左、右焦点分别为,离心率, 为椭圆上的任意一点(不含长轴端点),且面积的最大值为1.
(1)求椭圆的方程;
(2)已知直线与椭圆交于不同的两点,且线段的中点不在圆内,求的取值范围.
【题目】如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,.
(1)证明: A1BD // 平面CD1B1;
(2)求三棱柱ABD-A1B1D1的体积.
【题目】已知圆C1的方程为x2+(y+1)2=4,圆C2的圆心坐标为(2,1).
(1)若圆C1与圆C2相交于A,B两点,且|AB|=,求点C1到直线AB的距离;
(2)若圆C1与圆C2相内切,求圆C2的方程.
【题目】如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F. (1)判断BE是否平分∠ABC,并说明理由;(2)若AE=6,BE=8,求EF的长.