【题目】已知函数, .
(1)若函数在上是减函数,求实数的取值范围;
(2)是否存在整数,使得的解集恰好是,若存在,求出的值;若不存在,说明理由.
【题目】已知函数是偶函数.
(1)求的值;
(2)若函数没有零点,求得取值范围;
(3)若函数, 的最小值为0,求实数的值.
【题目】锐角△ABC中,角A、B、C所对的边分别为a、b、c,且tanA﹣tanB= (1+tanAtanB). (Ⅰ)若c2=a2+b2﹣ab,求角A、B、C的大小;(Ⅱ)已知向量 =(sinA,cosA), =(cosB,sinB),求|3 ﹣2 |的取值范围.
【题目】在如图所示的几何体中,平面平面,四边形为平行四边形, , , , .
(1)求证: 平面;
(2)求到平面的距离;
(3)求三棱锥的体积.
【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆. (1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?(2)已知AP段围墙高1米,AQ段围墙高1.5米,AP段围墙造价为每平方米150元,AQ段围墙造价为每平方米100元.若围围墙用了30000元,问如何围可使竹篱笆用料最省?
【题目】如图, 是直径, 所在的平面, 是圆周上不同于的动点.
(1)证明:平面平面;
(2)若,且当二面角的正切值为时,求直线与平面所成的角的正弦值.
【题目】如图,已知四棱锥中,底面是边长为1的正方形,侧棱底面,且, 是侧棱上的动点.
(1)求四棱锥的表面积;
(2)是否在棱上存在一点,使得平面;若存在,指出点的位置,并证明;若不存在,请说明理由.
【题目】在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,E、F分别为A1C1、B1C1的中点,D为棱CC1上任一点. (Ⅰ)求证:直线EF∥平面ABD;(Ⅱ)求证:平面ABD⊥平面BCC1B1 .
【题目】△ABC的内角A,B,C所对的边分别为a,b,c.向量 =(a, b)与 =(cosA,sinB)平行. (Ⅰ)求A;(Ⅱ)若a= ,b=2,求△ABC的面积.
【题目】已知函数是定义在上的奇函数,且偶函数的定义域为,且当时, .若存在实数,使得成立,则实数的取值范围是( )
A. B. C. D.