【题目】已知F1、F2是椭圆 =1的焦点,点P在椭圆上,若∠F1PF2= ,则△F1PF2的面积为 .
【题目】某中学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是 .
【题目】已知直线l:kx﹣y+1+2k=0(k∈R) (Ⅰ)证明直线l经过定点并求此点的坐标;(Ⅱ)若直线l不经过第四象限,求k的取值范围;(Ⅲ)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.
【题目】2017年3月14日,“ofo共享单车”终于来到芜湖,ofo共享单车又被亲切称作“小黄车”是全球第一个无桩共享单车平台,开创了首个“单车共享”模式.相关部门准备对该项目进行考核,考核的硬性指标是:市民对该项目的满意指数不低于0.8,否则该项目需进行整改,该部门为了了解市民对该项目的满意程度,随机访问了使用共享单车的100名市民,并根据这100名市民对该项目满意程度的评分,绘制了如下频率分布直方图: (I)为了了解部分市民对“共享单车”评分较低的原因,该部门从评分低于60分的市民中随机抽取2人进行座谈,求这2人评分恰好都在[50,60)的概率;(II)根据你所学的统计知识,判断该项目能否通过考核,并说明理由.(注:满意指数= )
【题目】下表是某厂的产量x与成本y的一组数据:
产量x(千件)
2
3
5
6
成本y(万元)
7
8
9
12
(Ⅰ)根据表中数据,求出回归直线的方程 = x (其中 = , = ﹣ )(Ⅱ)预计产量为8千件时的成本.
【题目】A,B两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A,B两人的平均成绩分别是xA , xB , 观察茎叶图,下列结论正确的是( ) A.xA<xB , B比A成绩稳定B.xA>xB , B比A成绩稳定C.xA<xB , A比B成绩稳定D.xA>xB , A比B成绩稳定
【题目】某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A.9B.10C.12D.13
【题目】已知F是双曲线 =1(a>0,b>0)的左焦点,E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围为( )A.(1,2)B.(2,1+ )C.( ,1)D.(1+ ,+∞)
【题目】四棱锥P﹣ABCD中,底面ABCD为直角梯形,AB⊥AD,BC∥AD,且AB=BC=2,AD=3,PA⊥平面ABCD且PA=2,则PB与平面PCD所成角的正弦值为( ) A.B.C.D.
【题目】已知公比为正数的等比数列{an}(n∈N*),首项a1=3,前n项和为Sn , 且S3+a3、S5+a5、S4+a4成等差数列.(1)求数列{an}的通项公式;(2)设bn= .