题目内容

【题目】已知F是双曲线 =1(a>0,b>0)的左焦点,E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围为(
A.(1,2)
B.(2,1+
C.( ,1)
D.(1+ ,+∞)

【答案】A
【解析】解:根据双曲线的对称性,得 △ABE中,|AE|=|BE|,
△ABE是锐角三角形,即∠AEB为锐角,
由此可得Rt△AFE中,∠AEF<45°,
得|AF|<|EF|
∵|AF|= = ,|EF|=a+c,
<a+c,即2a2+ac﹣c2>0,
两边都除以a2 , 得e2﹣e﹣2<0,解之得﹣1<e<2,
∵双曲线的离心率e>1,
∴该双曲线的离心率e的取值范围是(1,2)
故选:A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网