【题目】阅读下面材料,尝试类比探究函数y=x2 的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象. 阅读材料:
我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.
在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.
对于函数y= ,我们可以通过表达式来研究它的图象和性质,如:

(1)在函数y= 中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.
(2)在函数y= 中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;
(3)在函数y= 中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;
(4)由函数y= 可知f(﹣x)=﹣f(x),即y= 是奇函数,可以推测出,对应的图象关于原点对称. 结合以上性质,逐步才想出函数y= 对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.

 0  258393  258401  258407  258411  258417  258419  258423  258429  258431  258437  258443  258447  258449  258453  258459  258461  258467  258471  258473  258477  258479  258483  258485  258487  258488  258489  258491  258492  258493  258495  258497  258501  258503  258507  258509  258513  258519  258521  258527  258531  258533  258537  258543  258549  258551  258557  258561  258563  258569  258573  258579  258587  266669 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网