5.由$\frac{7}{10}$>$\frac{5}{8}$,$\frac{9}{11}$>$\frac{8}{10}$,$\frac{13}{25}$>$\frac{21}{19}$,…若a>b>0,m>0,则$\frac{b+m}{a+m}$与$\frac{b}{a}$的关系( )
| A. | 相等 | B. | 前者大 | C. | 后者大 | D. | 不确定 |
20.某新开业的冷饮店为了促销举办买冷饮送套圈活动:每买1元的冷饮送两次套圈的机会,套中即送成本价为a元(a>0)的纪念杯一个.在一段时间内统计的消费金额和套中奖杯的个数之间的数据如下表且具有线性相关关系:
(Ⅰ)预计消费者在消费30元时可获得的纪念杯的个数;
(Ⅱ) 试利用函数的单调性,讨论冷饮店的利润预期与纪念杯的成本价a之间的关系.
参考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$(其中$\overline x$,$\overline y$分别是x与y的平均数)
提示:x1y1+x2y2+…+x7y7=245,${x_1}^2+{x_2}^2+…+{x_7}^2=745$.
| 消费金额x元 | 2 | 4 | 6 | 8 | 12 | 15 | 16 |
| 获得纪念杯个数y | 1 | 1 | 2 | 3 | 4 | 5 | 5 |
(Ⅱ) 试利用函数的单调性,讨论冷饮店的利润预期与纪念杯的成本价a之间的关系.
参考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$(其中$\overline x$,$\overline y$分别是x与y的平均数)
提示:x1y1+x2y2+…+x7y7=245,${x_1}^2+{x_2}^2+…+{x_7}^2=745$.
19.对于函数f(x)=asinx-bx+c(其中a,b∈R,c∈Z),选取a,b,c的一组值计算f(2)与f(-2),所得出的正确结果一定不可能是( )
| A. | f(2)=4,f(-2)=6 | B. | f(2)=3,f(-2)=1 | C. | f(2)=1,f(-2)=2 | D. | f(2)=2,f(-2)=4 |
18.已知集合全集U=R,M={x|x<1},N={x|log2x<1},则M∩(∁UN)=( )
0 250272 250280 250286 250290 250296 250298 250302 250308 250310 250316 250322 250326 250328 250332 250338 250340 250346 250350 250352 250356 250358 250362 250364 250366 250367 250368 250370 250371 250372 250374 250376 250380 250382 250386 250388 250392 250398 250400 250406 250410 250412 250416 250422 250428 250430 250436 250440 250442 250448 250452 250458 250466 266669
| A. | ∅ | B. | {x|x≤0} | C. | {x|x<1} | D. | {x|x≥2} |