10.若函数f(x)=$\frac{sinx}{x}$,并且$\frac{π}{3}$<a<b<$\frac{2π}{3}$,则下列各结论中正确的是( )
| A. | f(a)<f($\sqrt{ab}$)<f($\frac{a+b}{2}$) | B. | f($\sqrt{ab}$)<f($\frac{a+b}{2}$)<f(b) | C. | f($\sqrt{ab}$)<f($\frac{a+b}{2}$)<f(a) | D. | f(b)<f($\frac{a+b}{2}$)<f($\sqrt{ab}$) |
9.定积分${∫}_{0}^{1}$(3$\sqrt{x}$-$\sqrt{1-{x}^{2}}$)dx等于( )
| A. | $\frac{8-π}{4}$ | B. | $\frac{4-π}{4}$ | C. | $\frac{2-π}{2}$ | D. | $\frac{4-π}{8}$ |
8.定义在R上的偶函数y=f(x)满足f(x+1)=-f(x),且当x∈(0,1]时单调递增,则( )
| A. | $f(\frac{1}{3})<f(-5)<f(\frac{5}{2})$ | B. | $f(\frac{1}{3})<f(\frac{5}{2})<f(-5)$ | C. | $f(\frac{5}{2})<f(\frac{1}{3})<f(-5)$ | D. | $f(-5)<f(\frac{1}{3})<f(\frac{5}{2})$ |
2.下列结论正确的是( )
| A. | 若直线l∥平面α,直线l∥平面β,则α∥β. | |
| B. | 若直线l⊥平面α,直线l⊥平面β,则α∥β. | |
| C. | 若直线l1,l2与平面α所成的角相等,则l1∥l2 | |
| D. | 若直线l上两个不同的点A,B到平面α的距离相等,则l∥α |
1.定义域为R的函数f(x)对任意x都有f(x)=f(4-x),且其导函数f′(x)满足(x-2)f′(x)>0,则当2<m<4时,有( )
0 245067 245075 245081 245085 245091 245093 245097 245103 245105 245111 245117 245121 245123 245127 245133 245135 245141 245145 245147 245151 245153 245157 245159 245161 245162 245163 245165 245166 245167 245169 245171 245175 245177 245181 245183 245187 245193 245195 245201 245205 245207 245211 245217 245223 245225 245231 245235 245237 245243 245247 245253 245261 266669
| A. | f(2)>f(2m)>f(log2m) | B. | f(log2m)>f(2m)>f(2) | C. | f(2m)>f(log2m)>f(2) | D. | f(2m)>>f(2)>f(log2m) |