10.矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角BACD,则四面体ABCD的四个顶点所在球的体积为( )
| A. | $\frac{125}{12}π$ | B. | $\frac{125}{9}π$ | C. | $\frac{125}{6}π$ | D. | $\frac{125}{3}π$ |
8.在对某地区的230名居民进行一种传染病与饮用水关系的调查中,在患病的30人中有18人饮用了不干净水,而其他不患病的200人中有62人饮用了不干净水.
(1)根据已知数据画出列联表;
(2)利用列联表的独立性检验,判断能否以99%的把握认为“该地区的传染病与饮用不干净的水有关”.
参考表格:
(1)根据已知数据画出列联表;
(2)利用列联表的独立性检验,判断能否以99%的把握认为“该地区的传染病与饮用不干净的水有关”.
参考表格:
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
6.
如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=$\frac{1}{4}$CD,有以下结论:①∠BAE=30°;②△ABE∽△AEF;
③AE⊥EF; ④△ADF∽△ECF.
其中正确的个数为( )
③AE⊥EF; ④△ADF∽△ECF.
其中正确的个数为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
5.数列{an} 满足a1=2,an+1=-$\frac{1}{{a}_{n}+1}$,则a2015等于( )
| A. | 2 | B. | -$\frac{1}{3}$ | C. | -$\frac{3}{2}$ | D. | 1 |
4.对长期吸烟与患肺癌这两个分类变量的计算中,得出K2的值大于3.841,且查表可得P(K2≥3.841)≈0.05,则下列说法正确的是( )
| A. | 我们有95%的把握认为长期吸烟与患肺癌有关系,那么在100个长期吸烟的人中必有95人患肺癌 | |
| B. | 从独立性检验的原理可知有95%的把握认为长期吸烟与患肺癌有关系,即某一个人如果长期吸烟,那么他有95%的可能患肺癌 | |
| C. | 从独立性检验的原理可知有超过95%的把握认为长期吸烟与患肺癌有关系,是指有不超过5%的可能性使得推断出现错误 | |
| D. | 以上三种说法都不正确 |
2.已知角α的终边过点P(-12,5),则( )
0 241320 241328 241334 241338 241344 241346 241350 241356 241358 241364 241370 241374 241376 241380 241386 241388 241394 241398 241400 241404 241406 241410 241412 241414 241415 241416 241418 241419 241420 241422 241424 241428 241430 241434 241436 241440 241446 241448 241454 241458 241460 241464 241470 241476 241478 241484 241488 241490 241496 241500 241506 241514 266669
| A. | cosα=-$\frac{5}{12}$ | B. | tanα=-$\frac{12}{13}$ | C. | sinα=$\frac{5}{13}$ | D. | tanα=-$\frac{12}{5}$ |