题目内容

6.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=$\frac{1}{4}$CD,有以下结论:①∠BAE=30°;②△ABE∽△AEF;
③AE⊥EF;  ④△ADF∽△ECF.
其中正确的个数为(  )
A.1B.2C.3D.4

分析 推导出∠B=∠C=90°,AB:EC=BE:CF=2:1,从而△ABE∽△ECF,进而∠AEF=∠B=90°,由此能得到△ABE∽△AEF,AE⊥EF.

解答 解:∵在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=$\frac{1}{4}$CD,
∴∠B=∠C=90°,AB:EC=BE:CF=2:1.
∴△ABE∽△ECF.
∴AB:EC=AE:EF,∠AEB=∠EFC.
∵BE=CE,∠FEC+∠EFC=90°,
∴AB:AE=BE:EF,∠AEB+∠FEC=90°.
∴∠AEF=∠B=90°.
∴△ABE∽△AEF,AE⊥EF.
∴②③正确.
故选:B.

点评 本题考查命题真假的判断,考查三角形相似等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网