15.
如图1所示,在△ABC中,AB⊥AC,AD⊥BC,则AB2=BD•BC.类似有命题:在三棱锥A-BCD中,如图2所示,AD⊥面ABC.若A在△BCD内的射影为O,E在BC上,且E,O,D在同一条直线上,则S△ABC2=S△BCO•S△BCD,此命题是( )
| A. | 假命题 | |
| B. | 增加AB⊥AC的条件才是真命题 | |
| C. | 真命题 | |
| D. | 增加三棱锥A-BCD是正棱锥的条件才是真命题 |
13.a、b、c∈R,且a+b+c=0,abc>0,则$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$的值( )
| A. | 一定是负数 | B. | 一定是正数 | C. | 可能是0 | D. | 正负不能确定 |
8.
如图所示,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则一次性传递的最大信息量为( )
| A. | 26 | B. | 24 | C. | 20 | D. | 19 |
7.三角形的面积$s=\frac{1}{2}(a+b+c)r$,a﹑b﹑c 为三边的边长,r为三角形内切圆半径,利用类比推理可以得到四面体的体积为( )
0 241142 241150 241156 241160 241166 241168 241172 241178 241180 241186 241192 241196 241198 241202 241208 241210 241216 241220 241222 241226 241228 241232 241234 241236 241237 241238 241240 241241 241242 241244 241246 241250 241252 241256 241258 241262 241268 241270 241276 241280 241282 241286 241292 241298 241300 241306 241310 241312 241318 241322 241328 241336 266669
| A. | V=$\frac{1}{3}$abc | |
| B. | $V=\frac{1}{3}sh$ | |
| C. | $V=\frac{1}{3}(ab+bc+ca)h$ | |
| D. | $V=\frac{1}{3}({s_1}+{s_2}+{s_3}+{s_4})r$(s1,s2,s3,s4分别为四个面的面积,r为四面体内切球半径) |