11.
执行如图的程序框图,如果输入的a=-1,则输出的S=( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
10.已知集合A={x|x<1},B={x|log3x<1},则( )
| A. | A∩B={x|x<1} | B. | A∪B={x|x<1} | C. | A∪B=R | D. | A∩B={x|0<x<1} |
8.共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:$\stackrel{∧}{y}$(1)=$\frac{4}{x}$+1.1,方程乙:$\stackrel{∧}{y}$(2)=$\frac{6.4}{{x}^{2}}$+1.6.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注:$\stackrel{∧}{{e}_{i}}$=yi-$\stackrel{∧}{{y}_{i}}$,$\stackrel{∧}{{e}_{i}}$称为相应于点(xi,yi)的残差(也叫随机误差);
②分别计算模型甲与模型乙的残差平方和Q1及Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).
| 租用单车数量x(千辆) | 2 | 3 | 4 | 5 | 8 |
| 每天一辆车平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注:$\stackrel{∧}{{e}_{i}}$=yi-$\stackrel{∧}{{y}_{i}}$,$\stackrel{∧}{{e}_{i}}$称为相应于点(xi,yi)的残差(也叫随机误差);
| 租用单车数量x(千辆) | 2 | 3 | 4 | 5 | 8 | |
| 每天一辆车平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
| 模型甲 | 估计值$\stackrel{∧}{{y}_{i}}$(1) | 2.4 | 2.1 | 1.6 | ||
| 残差$\stackrel{∧}{{e}_{i}}$(1) | 0 | -0.1 | 0.1 | |||
| 模型乙 | 估计值$\stackrel{∧}{{y}_{i}}$ (2) | 2.3 | 2 | 1.9 | ||
| 残差$\stackrel{∧}{{e}_{i}}$(2) | 0.1 | 0 | 0 | |||
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).
4.
我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )
| ① | ② | ③ | |
| A | i≤7? | s=s-$\frac{1}{i}$ | i=i+1 |
| B | i≤128? | s=s-$\frac{1}{i}$ | i=2i |
| C | i≤7? | s=s-$\frac{1}{2i}$ | i=i+1 |
| D | i≤128? | s=s-$\frac{1}{2i}$ | i=2i |
| A. | A | B. | B | C. | C | D. | D |
3.若sin($α+\frac{π}{4}$)=$\sqrt{2}$(sinα+2cosα),则sin2α=( )
| A. | -$\frac{4}{5}$ | B. | $\frac{4}{5}$ | C. | -$\frac{3}{5}$ | D. | $\frac{3}{5}$ |
2.用电脑每次可以从区间(0,1)内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于$\frac{1}{3}$的概率为( )
0 241140 241148 241154 241158 241164 241166 241170 241176 241178 241184 241190 241194 241196 241200 241206 241208 241214 241218 241220 241224 241226 241230 241232 241234 241235 241236 241238 241239 241240 241242 241244 241248 241250 241254 241256 241260 241266 241268 241274 241278 241280 241284 241290 241296 241298 241304 241308 241310 241316 241320 241326 241334 266669
| A. | $\frac{1}{27}$ | B. | $\frac{2}{3}$ | C. | $\frac{8}{27}$ | D. | $\frac{4}{9}$ |