6.已知实数a>0,函数$f(x)=\left\{\begin{array}{l}{e^{x-1}}+a,x<0\\{e^{x-}}+\frac{a}{2}{x^2}-(a+1)x+a,x≥0\end{array}\right.$,其中e是自然对数的底数,若函数y=f(x)与y=f[f(x)]有相同的值域,则实数a的取值范围是( )
| A. | (0,2] | B. | [1,2] | C. | (0,1] | D. | [1,e] |
5.若点M(a,b)在函数y=-x2+3lnx的图象上,点N(c,d)在函数y=x-2的图象上,则$\sqrt{(a+c)^{2}+(b+d)^{2}}$的最小值为( )
| A. | $\sqrt{2}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 3$\sqrt{2}$ |
2.下列结论中,错误的为( )
| A. | 对任意的x∈R,都有2x≥x2成立 | |
| B. | 存在实数x0,使得${log_{\frac{1}{2}}}{x_0}>{x_0}$ | |
| C. | 存在常数C,当x>C时,都有2x>x2成立 | |
| D. | 存在实数x0,使得${log_{\frac{1}{2}}}{x_0}>{2^{x_0}}$ |
1.设等差数列{an}满足$\frac{si{n}^{2}{a}_{2}-co{s}^{2}{a}_{2}+co{s}^{2}{a}_{2}co{s}^{2}{a}_{7}-si{n}^{2}{a}_{2}si{n}^{2}{a}_{7}}{sin({a}_{1}+{a}_{8})}$=1,公差d∈(-1,0),若当且仅当n=11时,数列{an}的前n项和Sn取得最大值,则首项a1的取值范围是( )
| A. | ($\frac{9π}{10}$,π) | B. | [π,$\frac{11π}{10}$] | C. | [$\frac{9π}{10}$,π] | D. | (π,$\frac{11π}{10}$) |
18.由曲线y=x2和直线y=x+2围成封闭图形的面积是( )
| A. | $\frac{10}{3}$ | B. | $\frac{7}{6}$ | C. | $\frac{9}{2}$ | D. | $\frac{13}{6}$ |
17.曲线y=ex上的点到直线y=x的距离最小值为( )
0 240997 241005 241011 241015 241021 241023 241027 241033 241035 241041 241047 241051 241053 241057 241063 241065 241071 241075 241077 241081 241083 241087 241089 241091 241092 241093 241095 241096 241097 241099 241101 241105 241107 241111 241113 241117 241123 241125 241131 241135 241137 241141 241147 241153 241155 241161 241165 241167 241173 241177 241183 241191 266669
| A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\frac{\sqrt{2}}{2}$(e-1) | D. | $\sqrt{2}$ |