从学号为0~49的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是( )
| A、1,2,3,4,5 |
| B、5,16,27,38,49 |
| C、2,4,6,8,10 |
| D、4,13,22,31,40 |
已知离散型随机变量X的分布列如表,则常数q=( )
| X | 0 | 1 | 2 |
| P | 0.5 | 1-2q | q2 |
A、1+
| ||||
B、1-
| ||||
C、1±
| ||||
D、
|
已知直角三角形的两条直角边长分别为4和6,则这两直角边上的中线所夹的锐角的余弦值是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
要得到函数y=cosx的图象,只需将函数y=cos(x+
)的图象沿x轴( )
| π |
| 4 |
A、向左平移
| ||
B、向左平移
| ||
C、向右平移
| ||
D、向右平移
|
已知函数f(x-1)是偶函数,且x<-1时,f′(x)>0恒成立,又f(2)=0,则(x+1)f(x+2)<0的解集为( )
| A、(-∞,-2)∪(4,+∞) |
| B、(-6,-1)∪(0,4) |
| C、(-6,-1)∪(0,+∞) |
| D、(-∞,-6)∪(4,+∞) |
在△ABC中,A=60°,C=45°,a=10,则边c的长为( )
A、5
| ||||
B、10
| ||||
C、
| ||||
D、5
|
已知双曲线C:
-
=1(a>0,b>0)的离心率为
,则C的渐近线方程为( )
| x2 |
| a2 |
| y2 |
| b2 |
| 5 |
| A、y=±2x | ||
B、y=±
| ||
C、y=±
| ||
D、y=±
|
回归直线方程
=2-1.2x,则变量x增加一个单位( )
| y |
| A、y平均增加1.2个单位 |
| B、y平均增加2个单位 |
| C、y平均减少2个单位2 |
| D、y平均减少1.2个单位 |
已知i是虚数单位,则复数
的共轭复数的虚部是( )
| 1+i |
| 1-i |
| A、1 | B、-1 | C、i | D、-i |
二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2;三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积)V=
πr3.应用合情推理,若四维空间中,“超球”的三维测度V=8πr3,则其四维测度W=( )
| 4 |
| 3 |
| A、2πr4 |
| B、3πr4 |
| C、4πr4 |
| D、6πr4 |