函数y=f(x)的图象与y=2x的图象关于直线y=x对称,则函数y=f(4x-x2)的递增区间是(    )。
设函数f(x)=log2(10-ax),a为常数,若f(3)=2。
(1)求a的值;
(2)求使f(x)≤0的x的取值范围;
(3)若在区间[1,3]内的每一个x值,不等式f(x)>2x+m恒成立,求实数m的取值范围;
(4)讨论关于x的方程|f(x)|=c+9x-x2的根的个数。
已知函数f(x)=|log2x|,则下列不等式成立的是
[     ]
A.f(2)<f()<f()  
B.f()<f(2)<f() 
C.f()<f(2)<f() 
D.f()<f()<f(2)
已知函数f(x)=loga(2x+b-1)(a>0,a≠1)的图象如图所示,则a、b满足的关系是

[     ]

A.0<a-1<b<1
B.0<b<a-1<1
C.0<b-1<a<1
D.0<a-1<b-1<1
 0  15671  15679  15685  15689  15695  15697  15701  15707  15709  15715  15721  15725  15727  15731  15737  15739  15745  15749  15751  15755  15757  15761  15763  15765  15766  15767  15769  15770  15771  15773  15775  15779  15781  15785  15787  15791  15797  15799  15805  15809  15811  15815  15821  15827  15829  15835  15839  15841  15847  15851  15857  15865  266669