(本小题满分13分)为了解某校今年高一年级女生的身体素质状况,从该校高一年级女生中抽取了一部分学生进行“掷铅球”的项目测试,成绩低于5米为不合格,成绩在5至7米(含5米不含7米)的为及格,成绩在7米至11米(含7米和11米,假定该校高一女生掷铅球均不超过11米)为优秀.把获得的所有数据,分成五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在9米到11米之间.(1)求实数的值及参加“掷铅球”项目测试的人数;(2)若从此次测试成绩最好和最差的两组中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生自不同组的概率.
在2012年“双节”期间,高速公路车辆较多。某调查公司在一服务区从七座以下小型汽车中,按进服务区的先后每间隔50辆就抽取一辆的抽样方法,抽取了40名驾驶员进行调查,将他们在某段高速公路上的车速(km/t)分成6段:,,,,,后得到如图的频率分布直方图。问:(1)该公司在调查取样中,用到的是什么抽样方法?(2)求这40辆小型汽车车速的众数和中位数的估计值;(3)若从车速在中的车辆中任取2辆,求抽出的2辆中速度在中的车辆数的分布列及其数学期望。(12分)
(本小题满分12分)郑州市为了缓解交通压力,大力发展公共交通,提倡多坐公交少开车.为了调查市民乘公交车的候车情况,交通主管部门从在某站台等车的45名候车乘客中随机抽取15人,按照他们的候车时间(单位:分钟)作为样本分成6组,如下表所示:(1)估计这45名乘客中候车时间少于12分钟的人数;(2)若从上表第四、五组的5人中随机抽取2人做进一步的问卷调查,求抽到的2人恰好来自不同组的概率.
M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作。(I)求男生成绩的中位数及女生成绩的平均值;(II)如果用分层抽样的方法从“甲部门”人选和“乙部门”人选中共选取5人,再从这5人中选2人,那么至少有一人是“甲部门”人选的概率是多少?
某学校900名学生在一次百米测试中,成绩全部介于秒与秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组,第二组,…,第五组,下图是按上述分组方法得到的频率分布直方图.(1)若成绩小于14秒认为优秀,求该样本在这次百米测试中成绩优秀的人数;(2)请估计学校900名学生中,成绩属于第四组的人数;(3)请根据频率分布直方图,求样本数据的众数和中位数(保留两位小数).
对甲、乙两种商品重量的误差进行抽查,测得数据如下(单位:mg):甲:13 15 14 14 9 14 21 9 10 11乙:10 14 9 12 15 14 11 19 22 16(1)画出样本数据的茎叶图,并指出甲、乙两种商品重量误差的中位数;(2)计算甲种商品重量误差的样本方差;(3)现从重量误差不低于15的乙种商品中随机抽取2件,求重量误差为19的商品被抽中的概率.
某学校的三个学生社团的人数分布如下表(每名学生只能参加一个社团):
某英语学习小组共12名同学进行英语听力测试,随机抽取6名同学的测试成绩(单位:分),用茎叶图记录如下,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)成绩高于样本均值的同学为优秀,根据茎叶图估计该小组12名同学中有几名优秀同学;(3)从该小组12名同学中任取2人,求仅有1人是来自随机抽取6人中优秀同学的概率.
某校从参加市联考的甲、乙两班数学成绩110分以上的同学中各随机抽取8人,将这l6人的数学成绩编成茎叶图,如图所示.(I)茎叶图中有一个数据污损不清(用△表示),若甲班抽出来的同学平均成绩为l22分,试推算这个污损的数据是多少?(Ⅱ)现要从成绩在130分以上的5位同学中选2位作数学学习方法介绍,请将所有可能的结果列举出来,并求选出的两位同学不在同一个班的概率.
某园艺师用两种不同的方法培育了一批珍贵树苗,在树苗3个月大的时候,随机抽取甲、乙两种方法培育的树苗各10株,测量其高度,得到的茎叶图如图所示(单位:cm).(Ⅰ)依茎叶图判断用哪种方法培育的树苗的平均高度大?(Ⅱ)现从用两种方法培育的高度不低于80cm的树苗中随机抽取两株,求至少有一株是甲方法培育的概率。