[选修4 - 1:几何证明选讲](本小题满分10分)如图,在梯形中,∥BC,点,分别在边,上,设与相交于点,若,,,四点共圆,求证:.
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.(1)证明:CD∥AB; (2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.
如图,已知为锐角△的内心,且,点为内切圆与边的切点,过点作直线的垂线,垂足为.(1)求证:;(2)求的值.
如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D。(1)求证:CE2 = CD · CB;(2)若AB = BC = 2,求CE和CD的长。
选修4—1:几何证明选讲如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD//AP,AD、BC相交于 E点,F为CE上一点,且(1)求证:A、P、D、F四点共圆;(2)若AE·ED=24,DE=EB=4,求PA的长。
如图,已知AB为圆O的直径,BC切圆O于点B,AC交圆O于点P,E为线段BC的中点.求证:OP⊥PE.
已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM ≌△CFN;(2)求证:四边形BMDN是平行四边形.
切线与圆切于点,圆内有一点满足,的平分线交圆于,,延长交圆于,延长交圆于,连接.(Ⅰ)证明://;(Ⅱ)求证:.
在中,,过点的直线与其外接圆交于点,交延长线于点.(1)求证:; (2)若,求
如图所示,已知是圆的直径,是弦,,垂足为,平分。(1)求证:直线与圆的相切;(2)求证:。