已知椭圆的离心率为,椭圆短轴的一个端点与两个焦(Ⅰ)求椭圆的方程;(Ⅱ)已知动直线与椭圆相交于、两点. ①若线段中点的横坐标为,求斜率的值;②若点,求证:为定值.
(本小题满分12分)已知椭圆上的任意一点到它的两个焦点, 的距离之和为,且其焦距为.(Ⅰ)求椭圆的方程;(Ⅱ)已知直线与椭圆交于不同的两点A,B.问是否存在以A,B为直径的圆 过椭圆的右焦点.若存在,求出的值;不存在,说明理由.
(本题10分)已知,动点满足,设动点的轨迹是曲线,直线:与曲线交于两点.(1)求曲线的方程;(2)若,求实数的值;(3)过点作直线与垂直,且直线与曲线交于两点,求四边形面积的最大值.
(本题满分9分)已知顶点在原点,焦点在轴上的抛物线过点.(1)求抛物线的标准方程;(2)过点作直线交抛物线于两点,使得恰好平分线段,求直线的方程
解答题(本题共10分.请写出文字说明, 证明过程或演算步骤):已知是椭圆上一点,,是椭圆的两焦点,且满足(Ⅰ)求椭圆方程;(Ⅱ)设、是椭圆上任两点,且直线、的斜率分别为、,若存在常数使,求直线的斜率.
填空题(本大题有2小题,每题5分,共10分.请将答案填写在答题卷中的横线上):(Ⅰ)函数的最小值为 .(Ⅱ)若点在曲线上,点在曲线上,点在曲线上,则的最大值是 .
(本题满分12分)已知椭圆的中心在原点,焦点在坐标轴上,直线与该椭圆相交于和,且,,求椭圆的方程.
(本题满分10分) 若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.
(12分)已知抛物线的焦点为,准线为,过上一点P作抛物线的两切线,切点分别为A、B,(1)求证:;(2)求证:A、F、B三点共线;(3)求的值.
(本小题满分16分)如图,是椭圆的左、右顶点,椭圆的离心率为,右准线的方程为.(1)求椭圆方程;(2)设是椭圆上异于的一点,直线交于点,以为直径的圆记为. ①若恰好是椭圆的上顶点,求截直线所得的弦长;②设与直线交于点,试证明:直线与轴的交点为定点,并求该定点的坐标.