已知抛物线的焦点为,过任作直线(与轴不平行)交抛物线分别于两点,点关于轴对称点为,(1)求证:直线与轴交点必为定点;(2)过分别作抛物线的切线,两条切线交于,求的最小值,并求当取最小值时直线的方程.
如图,在平面直角坐标系中,、分别是椭圆的顶点,过坐标原点的直线交椭圆于、两点,其中在第一象限.过作轴的垂线,垂足为.连接,并延长交椭圆于点.设直线的斜率为.(Ⅰ)当直线平分线段时,求的值;(Ⅱ)当时,求点到直线的距离;(Ⅲ)对任意,求证:.
已知抛物线,点P(-1,0)是其准线与轴的焦点,过P的直线与抛物线C交于A、B两点.(1)当线段AB的中点在直线上时,求直线的方程;(2)设F为抛物线C的焦点,当A为线段PB中点时,求△FAB的面积.
设是抛物线上相异两点,到y轴的距离的积为且.(1)求该抛物线的标准方程.(2)过Q的直线与抛物线的另一交点为R,与轴交点为T,且Q为线段RT的中点,试求弦PR长度的最小值.
给定圆:及抛物线:,过圆心作直线,此直线与上述两曲线的四个交点,自上而下顺次记为,如果线段的长按此顺序构成一个等差数列,求直线的方程.
已知椭圆()右顶点到右焦点的距离为,短轴长为.(Ⅰ)求椭圆的方程;(Ⅱ)过左焦点的直线与椭圆分别交于、两点,若线段的长为,求直线的方程.
已知椭圆()右顶点与右焦点的距离为,短轴长为.(I)求椭圆的方程; (II)过左焦点的直线与椭圆分别交于、两点,若三角形的面积为,求直线的方程.
设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.(1) 求椭圆方程.(2) 过点的直线与椭圆交于不同的两点,当面积最大时,求.