已知两条不同的直线m、n,两个不同的平面a、β,则下列命题中的真命题是( )
(本小题满分12分)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,PA⊥AD,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点。(1)求证:BC//平面EFG;(2)求三棱锥E—AFG的体积。
(本小题满分12分)如图,平行四边形中,,将沿折起到的位置,使平面平面。(Ⅰ)求证:;(Ⅱ)求三棱锥的侧面积。
如图,在直四棱柱中,底面ABCD为等腰梯形,AB∥CD,AB="4,BC=CD=2," AA="2, " E、E、F分别是棱AD、AA、AB的中点。 (Ⅰ)证明:直线∥平面;w.w.w.k.s.5.u.c.o.m (Ⅱ)求二面角的余弦值
如图,在四棱锥中,平面平面,,是等边三角形,已知,.(Ⅰ)设是上的一点,证明:平面平面;(Ⅱ)求四棱锥的体积.
如图所示,四棱锥的底面是边长为1的菱形,,E是CD的中点,PA底面ABCD,。(I)证明:平面PBE平面PAB;(II)求二面角A—BE—P和的大小。
(本小题共13分)如图,在四棱锥P—ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°,为AB中点,F为PC中点.(I)求证:PE⊥BC;(II)求二面角C—PE—A的余弦值;(III)若四棱锥P—ABCD的体积为4,求AF的长.
(本小题满分12分)在四棱锥中,底面是一直角梯形,,,底面.(1)求三棱锥的体积;(2)在上是否存在一点,使得平面,若存在,求出的值;若不存在,试说明理由.
(本小题满分14分)已知四棱锥,底面为矩形,侧棱,其中,为侧棱上的两个三等分点,如图所示.(Ⅰ)求证:;(Ⅱ)求异面直线与所成角的余弦值;(Ⅲ)求二面角的余弦值.
(本小题12分)如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求异面直线AB与CD所成角的大小;(III)求点E到平面ACD的距离。