设函数)定义为如下数表,且对任意自然数n均有xn+1=的值为( )
数列的通项公式为,其前项和为,则的值为 ( )
已知,则与的面积之比为 .
已知,点B是轴上的动点,过B作AB的垂线交轴于点Q,若,.(1)求点P的轨迹方程;(2)是否存在定直线,以PM为直径的圆与直线的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。
已知向量,设函数.求的最小正周期与单调递增区间;在中,分别是角的对边,若,,求的最大值.
已知是中心在坐标原点的椭圆的一个焦点,且椭圆的离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设:、为椭圆上不同的点,直线的斜率为;是满足()的点,且直线的斜率为.①求的值;②若的坐标为,求实数的取值范围.
设为抛物线 ()的焦点,为该抛物线上三点,若,且(Ⅰ)求抛物线的方程;(Ⅱ)点的坐标为(,)其中,过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为.若,求的值.
已知平面向量若函数.(Ⅰ)求函数的最小正周期;(Ⅱ)将函数的图象上的所有的点向左平移1个单位长度,得到函数的图象,若函数在上有两个零点,求实数的取值范围.
已知向量,,函数.(Ⅰ)若方程在上有解,求的取值范围;(Ⅱ)在中,分别是A,B,C所对的边,当(Ⅰ)中的取最大值且时,求的最小值.
已知O为平面直角坐标系的原点,过点M(-2,0)的直线l与圆x+y=1交于P、Q两点,且(Ⅰ)求∠PDQ的大小;(Ⅱ)求直线l的方程.