题目内容

5.给出下列命题:①y=1是幂函数;②函数f(x)=2x-log2x的零点有且只有1;③$\sqrt{x-1}(x-2)≥0$的解集为[2,+∞);④“x<1”是“x<2”的充分非必要条件;其中真命题的序号是④.

分析 ①根据幂函数的定义知,y=1是常数函数,不是幂函数;②函数f(x)=2x-log2x的零点个数即为函数y=2x与y=log2x的图象的交点个数,在同一坐标系中画出它们的图象即可;③解不等式即可求得结论;④易知“x<1”是“x<2”的充分不必要条件.

解答 解;①y=1是常数函数,不是幂函数.故错;
②根据指数函数和对数函数的图象和性质得:函数f(x)=2x-log2x没有零点,故错;
③$\sqrt{x-1}$(x-2)≥0?$\left\{\begin{array}{l}{x-1>0}\\{x-2≥0}\end{array}\right.$,或x=0,解得x≥2或x=1,故$\sqrt{x-1}$(x-2)≥0的解集为[2,+∞)∪{0},错;
④“x<1”⇒“x<2”,但是“x<2”推不出“x<1”,因此“x<1”是“x<2”的充分不必要条件,正确;
故答案为④.

点评 此题是个基础题.考查利用导数求函数图象在某点的切线方程,不等式的解法,函数零点问题等基础知识,考查学生灵活应用知识分析解决问题的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网