题目内容
8.在一批产品中共12件,其中次品3件,每次从中任取一件,在取得合格品之前取出的次品数ξ的所有可能取值是0,1,2,3.分析 由已知条件能求出在取得合格品之前取出的次品数ξ的所有可能取值.
解答 解:∵在一批产品中共12件,其中次品3件,每次从中任取一件,
∴在取得合格品之前取出的次品数ξ的所有可能取值是0,1,2,3.
故答案为:0,1,2,3.
点评 本题考查离散型随机变量的可能取值的求法,是基础题,解题时要认真审题,注意离散型随机变量的性质的合理运用.
练习册系列答案
相关题目
18.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow{b}$=(1,n-1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则2m+4n的最小值为( )
| A. | 2 | B. | 2$\sqrt{2}$ | C. | 4 | D. | 8 |
3.
如图,在正方形OABC内.阴影部分是由两曲线y=$\sqrt{x}$,y=x2(0≤x≤1),在正方形内随机取一点,则此点取自阴影部分的概率是( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
13.随机变量X的分布列如下,则m=( )
| X | 1 | 2 | 3 | 4 |
| P | $\frac{1}{4}$ | m | $\frac{1}{3}$ | $\frac{1}{6}$ |
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{4}$ |
8.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程是y=$\frac{4}{3}$x,则该双曲线的离心率是( )
| A. | $\frac{5}{4}$ | B. | $\frac{5}{3}$ | C. | $\frac{7}{3}$ | D. | $\frac{\sqrt{21}}{3}$ |
9.设双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)与抛物线y2=8x交于两点A,B,且|AB|=8,则该双曲线的焦点到其渐近线的距离为( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 4 | D. | $\frac{\sqrt{6}}{3}$ |