题目内容
已知椭圆
:
的离心率为
,
分别为椭圆
的左、右焦点,若椭圆
的焦距为2.
⑴求椭圆
的方程;
⑵设
为椭圆上任意一点,以
为圆心,
为半径作圆
,当圆
与椭圆的右准线
有公共点时,求△
面积的最大值.
⑴求椭圆
⑵设
⑴
. ⑵
。
试题分析:⑴因为
所以
所以椭圆
⑵设点
因为
由于圆
因为
即
又因为
解得
当
点评:中档题,求椭圆的标准方程,主要运用了椭圆的几何性质,a,b,c,e的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理,简化解题过程。利用函数观点,建立三角形面积的表达式,确定其最值。
练习册系列答案
相关题目