题目内容
7.已知M为抛物线y2=4x上一动点,F为这条抛物线的焦点,有一个定点A(3,2),则|MA|+|MF|的最小值=4.分析 设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|进而把问题转化为求|MA|+|MD|取得最小,进而可推断出当D,M,A三点共线时|MA|+|MD|最小,答案可得.
解答 解:设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|,
∴要求|MA|+|MF|取得最小值,即求|MA|+|MD|取得最小,
当D,M,A三点共线时|MA|+|MD|最小,为3-(-1)=4.
故答案为:4.
点评 本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D,M,A三点共线时|MA|+|MD|最小是解题的关键.
练习册系列答案
相关题目
18.已知集合A={x|y=log2(4-x2)},B={y|y=2x+1},则A∩B=( )
| A. | ∅ | B. | (1,3) | C. | (1,+∞) | D. | (1,2) |
15.已知命题p:?m∈R,使得函数f(x)=x2+(m-1)x2-2是奇函数,命题q:向量$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2),则“$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$”是:“$\overrightarrow{a}$$∥\overrightarrow{b}$”的充要条件,则下列命题为真命题的是( )
| A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
2.设M是圆P:(x+5)2+y2=36上一动点,点Q的坐标为(5,0),若线段MQ的垂直平分线交直线PM于点N,则点N的轨迹方程为( )
| A. | $\frac{x^2}{25}+\frac{y^2}{9}=1$ | B. | $\frac{x^2}{16}+\frac{y^2}{9}=1$ | C. | $\frac{x^2}{25}-\frac{y^2}{9}=1$ | D. | $\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$ |
19.复数i-i2在复平面内表示的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |