ÌâÄ¿ÄÚÈÝ
7£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÉèÖ±ÏßC1£º$\frac{x}{a}$+$\frac{y}{b}$=1£¨a£¾b£¾0£©Óë×ø±êÖáËùΧ³ÉµÄ·â±ÕͼÐεÄÃæ»ýΪ1£¬Ö±ÏßC1Éϵĵ㵽ԵãOµÄ×î¶Ì¾àÀëΪ$\frac{2\sqrt{5}}{5}$£¬ÒÔÇúÏßC1Óë×ø±êÖáµÄ½»µãΪ¶¥µãµÄÍÖÔ²¼ÇΪ¦££®£¨1£©ÇóÍÖÔ²¦£µÄ±ê×¼·½³Ì£»
£¨2£©¼ºÖªÖ±Ïßl£ºy=kx+mÓëÍÖÔ²¦£½»ÓÚ²»Í¬Á½µãA¡¢B£¬µãGÊÇÏß¶ÎABÖе㣬ÉäÏßOG½»¹ì¼£¦£ÓÚµãQ£¬ÇÒ$\overrightarrow{OQ}$=¦Ë$\overrightarrow{OG}$£¬¦Ë¡ÊR£¬Èô¡÷AOBµÄÃæ»ýΪ1£¬Çó¦ËµÄÖµ£®
·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃab=2£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽ£¬¿ÉµÃa2+b2=5£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉÖ±Ïß´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬µÃ£¨1+4k2£©x2+8kmx+4m2-4=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢Öеã×ø±ê¹«Ê½£¬ÓÉÒÑÖªÌõ¼þµÃm¡Ù0£¬¼ÆËã|x1-x2|£¬ÓÉ´ËÄÜÇó³ö¡÷AOBµÄÃæ»ý£¬½â·½³Ì¿ÉµÃËùÇó£®
½â´ð ½â£º£¨1£©Ö±ÏßC1£º$\frac{x}{a}$+$\frac{y}{b}$=1Óë×ø±êÖáµÄ½»µãΪ£¨a£¬0£©£¬£¨0£¬b£©£¬
¼´ÓÐ$\frac{1}{2}$ab=1£¬¼´ab=2£¬
ÓÖԵ㵽ֱÏߵľàÀëΪ$\frac{2}{\sqrt{5}}$£¬
¼´Îª$\frac{1}{\sqrt{\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}}}$=$\frac{2}{\sqrt{5}}$£¬
½âµÃa=2£¬b=1£¬
ÔòÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉÖ±Ïßy=kx+m´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬µÃ£¨1+4k2£©x2+8kmx+4m2-4=0£¬
¡àx1+x2=$\frac{-8km}{1+4{k}^{2}}$£¬x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$¢Ù
¡ày1+y2=k£¨x1+x2£©+2m=$\frac{2m}{1+4{k}^{2}}$£¬
ÓÖÓÉÖеã×ø±ê¹«Ê½£¬µÃG£¨$\frac{-4km}{1+4{k}^{2}}$£¬$\frac{m}{1+4{k}^{2}}$£©£¬
½«Q£¨$\frac{-4¦Ëkm}{1+4{k}^{2}}$£¬$\frac{¦Ëm}{1+4{k}^{2}}$£©´úÈëÍÖÔ²·½³Ì£¬»¯¼ò£¬µÃ¦Ë2m2=1+4k2£¬¢Ú£®
¢Ú½â£ºÓÉ¢Ù¢ÚµÃm¡Ù0£¬¦Ë£¾1ÇÒ|x1-x2|=$\frac{4\sqrt{1+4{k}^{2}-{m}^{2}}}{1+4{k}^{2}}$£¬¢Û
½áºÏ¢Ú¢Û£¬µÃS¡÷AOB=$\frac{1}{2}$|m|•|x1-x2|=$\frac{2\sqrt{{¦Ë}^{2}-1}}{{¦Ë}^{2}}$£¬¦Ë¡Ê£¨1£¬+¡Þ£©£¬
ÓÉS¡÷AOB=1£¬½âµÃ¦Ë=$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬¿¼²éÖ±ÏߺÍÍÖÔ²µÄλÖùØÏµ£¬Ö±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬Í¬Ê±¿¼²éÏòÁ¿µÄ¹²ÏßµÄ×ø±ê±íʾºÍÈý½ÇÐεÄÃæ»ý¹«Ê½µÄÔËÓã¬ÊôÓÚÖеµÌ⣮