题目内容
11.函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{5}x,x≥1}\\{2x-1,x<1}\end{array}\right.$,零点的个数是1.分析 根据已知中分段函数的解析式,分类讨论各段上函数零点的个数,综合可得答案.
解答 解:当x≥1时,1+log5x≥1,此时函数无零点;
当x<1时,令2x-1=0,解得x=$\frac{1}{2}$,此时函数有一个零点;
综上可得函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{5}x,x≥1}\\{2x-1,x<1}\end{array}\right.$,零点的个数是1个,
故答案为:1
点评 本题考查的知识点是分段函数的应用,函数的零点,难度中档.
练习册系列答案
相关题目
2.不等式x2-1≥0的解集为( )
| A. | {x|-1≤x≤1} | B. | {x|-1<x<1} | C. | {x|x≥1或x≤-1} | D. | {x|x>1或x<-1} |
19.已知抛物线y2=2px(p>0)上一点M(1,y)到焦点F的距离为$\frac{17}{16}$.
(1)求p的值;
(2)若圆(x-a)2+y2=1与抛物线C有公共点,结合图形求实数a的取值范围.
(1)求p的值;
(2)若圆(x-a)2+y2=1与抛物线C有公共点,结合图形求实数a的取值范围.
3.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{37}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是( )
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
10.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=|x-1|,若方程f(x)=$\sqrt{x+a}$有4个不相等的实根,则实数a的取值范围是( )
| A. | (-$\frac{5}{4}$,1) | B. | ($\frac{3}{4}$,1) | C. | ($\frac{4}{5}$,1) | D. | (-1,$\frac{3}{4}$) |