题目内容
已知数列{an},其前n项和为Sn=
n2+
n? (n∈N*).
(Ⅰ)求a1,a2;
(Ⅱ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅲ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和Tn.
| 3 |
| 2 |
| 7 |
| 2 |
(Ⅰ)求a1,a2;
(Ⅱ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅲ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和Tn.
(Ⅰ)a1=S1=5,a1+a2=S2=
×22+
×2=13,
解得a2=8.
(Ⅱ)当n≥2时,an=Sn-Sn-1=
[n2-(n-1)2]+
[n-(n-1)]=
(2n-1)+
=3n+2.
又a1=5满足an=3n+2,
∴an=3n+2?(n∈N*).
∵an-an-1=3n+2-[3(n-1)+2]=3(n≥2,n∈N*),
∴数列{an}是以5为首项,3为公差的等差数列.
(Ⅲ)由已知得bn=2an(n∈N*),
∵
=
=2an+1-an=23=8(n∈N*),
又b1=2a1=32,
∴数列{bn}是以32为首项,8为公比的等比数列.
∴Tn=
=
(8n-1).
| 3 |
| 2 |
| 7 |
| 2 |
解得a2=8.
(Ⅱ)当n≥2时,an=Sn-Sn-1=
| 3 |
| 2 |
| 7 |
| 2 |
| 3 |
| 2 |
| 7 |
| 2 |
又a1=5满足an=3n+2,
∴an=3n+2?(n∈N*).
∵an-an-1=3n+2-[3(n-1)+2]=3(n≥2,n∈N*),
∴数列{an}是以5为首项,3为公差的等差数列.
(Ⅲ)由已知得bn=2an(n∈N*),
∵
| bn+1 |
| bn |
| 2an+1 |
| 2an |
又b1=2a1=32,
∴数列{bn}是以32为首项,8为公比的等比数列.
∴Tn=
| 32(1-8n) |
| 1-8 |
| 32 |
| 7 |
练习册系列答案
相关题目