题目内容
已知数列{an},其前n项和为Sn=| 3 |
| 2 |
| 7 |
| 2 |
(Ⅰ)求a1,a2;
(Ⅱ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅲ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和Tn.
分析:(Ⅰ)先根据a1=S1求得a1,再根据a1+a2=S2求得a2.
(Ⅱ)根据an=Sn-Sn-1,代入Sn=
n2+
n即可求得an.进而根据求得an-an-1为常数说明数列{an}是以5为首项,3为公差的等差数列.
(Ⅲ)把an代入
求得结果为常数,可推知数列{bn}等比数列.根据b1=2a1求得首项,根据
=8求得公比,进而根据等比数列的求和公式求得Tn.
(Ⅱ)根据an=Sn-Sn-1,代入Sn=
| 3 |
| 2 |
| 7 |
| 2 |
(Ⅲ)把an代入
| bn+1 |
| bn |
| bn+1 |
| bn |
解答:解:(Ⅰ)a1=S1=5,a1+a2=S2=
×22+
×2=13,
解得a2=8.
(Ⅱ)当n≥2时,an=Sn-Sn-1=
[n2-(n-1)2]+
[n-(n-1)]=
(2n-1)+
=3n+2.
又a1=5满足an=3n+2,
∴an=3n+2?(n∈N*).
∵an-an-1=3n+2-[3(n-1)+2]=3(n≥2,n∈N*),
∴数列{an}是以5为首项,3为公差的等差数列.
(Ⅲ)由已知得bn=2an(n∈N*),
∵
=
=2an+1-an=23=8(n∈N*),
又b1=2a1=32,
∴数列{bn}是以32为首项,8为公比的等比数列.
∴Tn=
=
(8n-1).
| 3 |
| 2 |
| 7 |
| 2 |
解得a2=8.
(Ⅱ)当n≥2时,an=Sn-Sn-1=
| 3 |
| 2 |
| 7 |
| 2 |
| 3 |
| 2 |
| 7 |
| 2 |
又a1=5满足an=3n+2,
∴an=3n+2?(n∈N*).
∵an-an-1=3n+2-[3(n-1)+2]=3(n≥2,n∈N*),
∴数列{an}是以5为首项,3为公差的等差数列.
(Ⅲ)由已知得bn=2an(n∈N*),
∵
| bn+1 |
| bn |
| 2an+1 |
| 2an |
又b1=2a1=32,
∴数列{bn}是以32为首项,8为公比的等比数列.
∴Tn=
| 32(1-8n) |
| 1-8 |
| 32 |
| 7 |
点评:本题主要考查了等比和等差数列的确定.关键是找到相邻两项的关系.
练习册系列答案
相关题目