题目内容
已知sin(α+
)+sinα=-
,-
<α<0,则cosα=______.
| π |
| 3 |
4
| ||
| 5 |
| π |
| 2 |
∵已知sin(α+
)+sinα=-
,-
<α<0,
∴sinαcos
+cosαsin
+sinα=
sinα+
cosα=
sin(α+
)=-
,
sin(α+
)=-
,又-
<α+
<
,
所以cos(α+
)=
.
∴cosα=cos[(α+
)-
]=cos(α+
)•cos
+sin(α+
)•sin
=
•
+(-
)•
=
,
故答案为
.
| π |
| 3 |
4
| ||
| 5 |
| π |
| 2 |
∴sinαcos
| π |
| 3 |
| π |
| 3 |
| 3 |
| 2 |
| ||
| 2 |
| 3 |
| π |
| 6 |
4
| ||
| 5 |
sin(α+
| π |
| 6 |
| 4 |
| 5 |
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
所以cos(α+
| π |
| 6 |
| 3 |
| 5 |
∴cosα=cos[(α+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 3 |
| 5 |
| ||
| 2 |
| 4 |
| 5 |
| 1 |
| 2 |
3
| ||
| 10 |
故答案为
3
| ||
| 10 |
练习册系列答案
相关题目
已知sin(α+
)+sinα=-
,-
<α<0,则cos(α+
)等于( )
| π |
| 3 |
4
| ||
| 5 |
| π |
| 2 |
| 2π |
| 3 |
A、-
| ||
B、-
| ||
C、
| ||
D、
|