题目内容

已知a为实数,数列{an}满足a1=a,当n≥2时,an=
an-1-3     (an-1>3)
4-an-1    (an-1≤3)

(1)当a=100时,填写下列列表格:
n 2 3 35 100
an
(2)当a=100时,求数列{an}的前100项的和S100
(3)令bn=
an
(-2)n
Tn=b1+b2+…+bn
,求证:当1<a<
4
3
时,Tn
4-3a
3
(1)
n 2 3 35 100
an 97 94 3 1
(2)当a=100时,由题意知数列{an}的前34项成首项为100,公差为-3的等差数列,从第35项开始,奇数项均为3,偶数项均为1,
从而S100=(100+97+94+…+4+1)+(3+1+…+3+1)(前一组共34项,后一组共66项)
=
(100+1)×34
2
+(3+1)×
66
2

=1717+132
=1849.                  
(3)当1<a<
4
3
时,因为an=
a,n为奇数
4-a,n为偶数

所以bn=
an
(-2)n
=
-
a
2 n
,n为奇数
4-a
2n
,n为偶数

当n=2k,k∈N*时,
Tn=b1+b2+…+b2k
=-
a
2
+
4-a
22
-
a
23
+
4-a
24
+…-
a
22k-1
+
4-a
22k

=-(
a
2
+
a
23
+…+
a
22k-1
)
+(
4-a
22
+
4-a
24
+…+
4-a
22k
)

=-
a
2
[1-(
1
4
)k ]
1-
1
4
+
4-a
4
[1-(
1
4
)k ]
1-
1
4

=
4-3a
3
[1-(
1
4
)
k
]

因为1<a<
4
3
,所以
4-3a
3
[1-(
1
4
)
k
]<
4-3a
3

当n=2k-1,k∈N*时,
Tn=b1+b2+…+b2k-1
=-
a
2
+
4-a
22
-
a
23
+
4-a
24
+…-
a
22k-1

-
a
2
+
4-a
22
-
a
2 3
+
4-a
24
+…-
a
22k-1
+
4-a
22k
4-3a
3

所以Tn
4-3a
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网