题目内容
已知a为实数,数列{an}满足a1=a,当n≥2时,an=
,
(1)当a=100时,填写下列列表格:
(2)当a=100时,求数列{an}的前100项的和S100;
(3)令bn=
,Tn=b1+b2+…+bn,求证:当1<a<
时,Tn<
.
|
(1)当a=100时,填写下列列表格:
| n | 2 | 3 | 35 | 100 |
| an |
(3)令bn=
| an |
| (-2)n |
| 4 |
| 3 |
| 4-3a |
| 3 |
(1)
(2)当a=100时,由题意知数列{an}的前34项成首项为100,公差为-3的等差数列,从第35项开始,奇数项均为3,偶数项均为1,
从而S100=(100+97+94+…+4+1)+(3+1+…+3+1)(前一组共34项,后一组共66项)
=
+(3+1)×
=1717+132
=1849.
(3)当1<a<
时,因为an=
,
所以bn=
=
,
当n=2k,k∈N*时,
Tn=b1+b2+…+b2k
=-
+
-
+
+…-
+
=-(
+
+…+
)+(
+
+…+
)
=-
+
=
[1-(
)k].
因为1<a<
,所以
[1-(
)k]<
,
当n=2k-1,k∈N*时,
Tn=b1+b2+…+b2k-1
=-
+
-
+
+…-
<-
+
-
+
+…-
+
<
.
所以Tn<
.
| n | 2 | 3 | 35 | 100 |
| an | 97 | 94 | 3 | 1 |
从而S100=(100+97+94+…+4+1)+(3+1+…+3+1)(前一组共34项,后一组共66项)
=
| (100+1)×34 |
| 2 |
| 66 |
| 2 |
=1717+132
=1849.
(3)当1<a<
| 4 |
| 3 |
|
所以bn=
| an |
| (-2)n |
|
当n=2k,k∈N*时,
Tn=b1+b2+…+b2k
=-
| a |
| 2 |
| 4-a |
| 22 |
| a |
| 23 |
| 4-a |
| 24 |
| a |
| 22k-1 |
| 4-a |
| 22k |
=-(
| a |
| 2 |
| a |
| 23 |
| a |
| 22k-1 |
| 4-a |
| 22 |
| 4-a |
| 24 |
| 4-a |
| 22k |
=-
| ||||
1-
|
| ||||
1-
|
=
| 4-3a |
| 3 |
| 1 |
| 4 |
因为1<a<
| 4 |
| 3 |
| 4-3a |
| 3 |
| 1 |
| 4 |
| 4-3a |
| 3 |
当n=2k-1,k∈N*时,
Tn=b1+b2+…+b2k-1
=-
| a |
| 2 |
| 4-a |
| 22 |
| a |
| 23 |
| 4-a |
| 24 |
| a |
| 22k-1 |
<-
| a |
| 2 |
| 4-a |
| 22 |
| a |
| 2 3 |
| 4-a |
| 24 |
| a |
| 22k-1 |
| 4-a |
| 22k |
| 4-3a |
| 3 |
所以Tn<
| 4-3a |
| 3 |
练习册系列答案
相关题目