题目内容
2.数列{an}和{bn}满足a1=1,b2=4,{an}为等差数列,且a1b1+a2b2+…anbn=2+(n-1)2n+1(1)求an与bn;
(2)记数列{$\frac{{2}^{{a}_{n}}}{({b}_{n}+1)({b}_{n+1}+1)}$}的前n和为Tn,求满足Tn≤$\frac{39}{120}$的最大n.
分析 (1)由a1b1+a2b2+…+anbn=2+(n-1)2n+1,代入n=1与n=2求得a2=2;从而确定an=n;再作差可得anbn=(n-1)2n+1-(n-2)2n=n•2n,从而求bn=2n;
(2)化简$\frac{{2}^{{a}_{n}}}{({b}_{n}+1)({b}_{n+1}+1)}$=$\frac{{2}^{n}}{({2}^{n}+1)({2}^{n+1}+1)}$=$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$,从而利用裂项求和法求得Tn=$\frac{1}{3}$-$\frac{1}{{2}^{n+1}+1}$,从而解不等式即可.
解答 解:(1)当n=1时,a1b1=2,
故b1=2,
当n=2时,a1b1+a2b2=2+(2-1)23,
即2+4a2=2+8,
故a2=2;
故数列{an}是以1为首项,1为公差的等差数列,
故an=n;
∵a1b1+a2b2+…+anbn=2+(n-1)2n+1,
∴a1b1+a2b2+…+an-1bn-1=2+(n-2)2n,
∴anbn=(n-1)2n+1-(n-2)2n=n•2n,
∴bn=2n;
(2)∵$\frac{{2}^{{a}_{n}}}{({b}_{n}+1)({b}_{n+1}+1)}$=$\frac{{2}^{n}}{({2}^{n}+1)({2}^{n+1}+1)}$
=$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$,
∴Tn=$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{9}$+…+($\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$)
=$\frac{1}{3}$-$\frac{1}{{2}^{n+1}+1}$,
∴Tn≤$\frac{39}{120}$可化为$\frac{1}{3}$-$\frac{1}{{2}^{n+1}+1}$≤$\frac{39}{120}$,
即$\frac{1}{{2}^{n+1}+1}$≥$\frac{1}{120}$,
即2n+1+1≤120,
故n+1≤6,
故n≤5;
故最大值为5.
点评 本题考查了整体思想与分类讨论的思想应用,同时考查了裂项求和法的应用.
(Ⅰ)某教练将所带10名学员“科二”模拟考试成绩进行统计(如表所示),并打算从恰有2项成绩不合格的学员中任意抽出2人进行补测(只测不合格项目),求补测项目种类不超过3项的概率.
(Ⅱ)“科二”考试中,学员需缴纳150元报名费,并进行1轮测试(按①,②,③,④,⑤的顺序进行),如果某项目不合格,可免费再进行1轮补测,若第1轮补测中仍有不合格项目,可选择“是否补考”,若补考则需缴纳300元补考费,并获得最多2轮补考机会,否则考试结束.每1轮补测都按①,②,③,④,⑤的顺序进行.学员在任何1轮测试或补测中5个项目均合格,方可通过“科二”考试,每人最多只能补考1次.某学员每轮测试或补测通过①,②,③,④,⑤各项测试的概率依次为1,1,1,$\frac{9}{10}$,$\frac{2}{3}$,且他遇到“是否补考”的决断时会选择补考.
(Ⅰ)求该学员能通过“科二”考试的概率.
(Ⅱ)求该学员缴纳的考试费用X的数学期望.
| 项目/学号编号 | ① | ② | ③ | ④ | ⑤ |
| (1) | T | T | T | ||
| (2) | T | T | T | ||
| (3) | T | T | T | T | |
| (4) | T | T | T | ||
| (5) | T | T | T | T | |
| (6) | T | T | T | ||
| (7) | T | T | T | T | |
| (8) | T | T | T | T | T |
| (9) | T | T | T | ||
| (10) | T | T | T | T | T |
| 注:“T”表示合格,空白表示不合格 | |||||
| A. | 3 | B. | $2\sqrt{3}$ | C. | 5 | D. | $3\sqrt{2}$ |
| A. | 2 | B. | $\frac{3}{2}$ | C. | 1+$\frac{\sqrt{3}}{2}$ | D. | 1 |